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Time Series Classification
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Outline

e Categorisation of Time Series

e Quick Overview of Time Series Data Mining
« Time Series Classification Tasks

« (Some of the) Preprocessing Techniques
 Time Series Classification Techniques

- Deep Neural Networks, DTW, Nearest Neighbor and its extensions
« Evaluation of Time Series Classifiers

« Selected Applications
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Categorisation of Time Series



Categorisation of Time Series

time series
(w.r.t. type of observations)

univariate multivariate Time series of complex

(temperature, (EEG, ECG, coordinates instances

salary...) on a touch screen,...) (e.g. spatiotemporal data: fMRI)
time series

(w.r.t. sampling frequency)

/ \

.Standard” unevenly sampled
(evenly sampled)
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Univariate Time Series

 Sequence of numbers
(measurements in subsequent moments of time)

T=(x1,...,xn) x; €R

 E.g.temperature, speed of a car, salary...
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Multivariate Time Series

 Sequence of vectors

« E.g. measurements describing weather conditions, ECG, EEG,
(x,y) coordinates...
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By MoodyGroove - 2007-01-24 (original upload date) Original uploader was MoodyGroove at en.wikipedia, Public Domain, https://commons.wikimedia.org/w/index.php?curid=5266589

By Thuglas at English Wikipedia - Transferred from en.wikipedia to Commons by Sreejithk2000 using CommonsHelper, Public Domain, https://commons.wikimedia.org/w/index.php?curid=10827060
K. Buza (2011): Fusion methods for time series classification, http://www.ismll.uni-hildesheim.de/pub/pdfs/Buza_thesis.pdf
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Time Series of Complex Instances

« E.g. functional magnetic resonance imaging (fMRI) data

« May be transformed to simpler time series for analysis

i : —— \ t Functional
/ — connectivity
strength

Functional images over time Voxelwise time-series ROI-wise time-series

A. Szenkovits, R. Meszlényi, K. Buza, N. Gaskd, R.l. Lung, M. Suciu (2018): Feature Selection with a Genetic
Algorithm for Classification of Brain Imaging Data, in U. Stanczyk, B. Zielosko, L.C. Jain: Advances in Feature
Selection for Data and Pattern Recognition, Springer
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Unevenly Sampled Time Series

 E.g. blood pressure of patient is measured irregularly
- Each observation x is associated with a time stamp ¢

T=( X, 11X, . .., 0iX )

2° n n

« Note: observation X may be a value, vector or complex instance

* Interpolation may be necessary
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Quick Overview of
Time Series Data Mining




Time Series Data Mining

Time Series Forecasting

Store Time Series Efficiently

Similarity Search

Clustering

Anomaly Detection in Time Series Data

Time Series Classification

Buza
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Time Series Forecasting
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Store Time Series Efficiently
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Clustering
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T. Warren Liao (2005): Clustering of time series data — a survey. Pattern recognition 38,11,
pp. 1857-1874.
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Anomaly Detection
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Anomaly Detection:
Point Anomaly, Contextual Anomaly, Collective Anomaly
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Time Series Classification Tasks
(not the solutions yet)



(Conventional) Time Series Classification Problem
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Semi-Supervised Classification

® O x
X ® = o O O GD x X i 1
x Sl Q O x X
x O o X
x x
o
x ® * " o} & (o) o x ® x .
x O O
» o x » O s OO o % k X i
X . x
x * % i il L, o x x %
b4 e ST l[_:_} b4
X s A A T X x
* A x x v b A A A A A T A i
(a) The training set. (b) Decision boundary with super- (c) 1st iteration of self-training.
vised training.
- ® N * & A
® * x ® x x A A A
x = W x X A A &
* * A A
x %
* ® = & x ® = « 5 A ® © O &
& o O
x O * b4 b O " x '& O O A
x X O O
x - X e A O
® X A
x % X * Fa A
i A Bk o R A AAa A , A

(d) 2nd iteration of self-training. (e) 3rd iteration of self-training. (f) Classification with self-training.

K. Marussy, K. Buza (2013): SUCCESS: A New Approach for Semi-Supervised Classification of
Time-Series, ICAISC, LNCS Vol. 7894, pp. 437-447, Springer.
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Semi-Supervised Classification of Time Series
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Semi-Supervised Classification of Time Series
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Semi-Supervised Classification of Time Series
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Semi-Supervised Classification of Time Series
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Active Learning for Time Series Classification
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Active Learning for Time Series Classification
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Active Learning for Time Series Classification
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Active Learning for Time Series Classification
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Early Classification of Time Series

« Can we build a model that recognizes the class before the entire time series
is observed?

« Trade-off between accuracy and earliness of classification

class ,A" class ,B”
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(Some of the)
Preprocessing Techniques



Transformation into Frequency Domain

Original Signal Fourier Transform
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SAX: Symbolic Aggregate Approximation

« Normalisation (1)
« PAA: Piecewise Aggregate Approximation (2)
« Mapping to discrete symbols (3)

A
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150 (™) L(? ||| ‘ i “t |'c (?
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D

raw time series normalized time series PAA SAX-representation

Lin, Jessica, et al (2003): A symbolic representation of time series, with implications for streaming algorithms,
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery.
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Change Instead of Absolute Values

T = ((xlayl) ----- (xnayn))
T = ((X2 —X1,Y2 = Y1)s- - -, (Xn — Xn—1,Yn — yn—l))
AXI\
t ] 'h_ﬂ‘&«.
Ay/\ » ).,f'l N e
t >

Buza

Time Series Classification and its Applications 32



Domain-specific Preprocessing — Example

keydown 16 16
keydown 84 24
keypress © 24
keyup 16 16 ©
keyup 84 84 ©
keydown 72 72

keydown 65 65
keypress @ 97
keyup 72 72 ©
keyup 65 65 ©
keydown 84 24

keyup 84 84 ©

keypress © 104 104 false 1444121075693

mj keystrokes-12users-raw-data.txt - Editor

Datei Bearbeiten Format Ansicht 7
hYPING PATTERN 1
keyup 9 9 © false 1444121874865

© true 1444121075394
8 true 1444121075462
84 true 1444121075462

50 100 150 200
’ I i

duration (ms)

false 1444121675539
false 1444121675542
© false 1444121875693

0

© false 1444121675718
97 false 1444121675719

50 100 150 200

duration (ms)

false 1444121075767 _ | 1
false 1444121075809 EREERE
© false 1444121075873 index of keystroke

0

keypress © 116 116 false 1444121075874

false 1444121675938

raw data (keystroke dynamics)

50 100 150 200

0

0

150 200

50 100

l

user 2

index of keystroke

time series
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Time Series Classification Techniques



Time Series Classification Techniques — Overview

Feature-based classification

- feature extraction + a standard classifier
(such as SVM, Naive Bayes, decision tree...)

- Possilbe features:

* min, max, avg, std, number of local optima, number of sign
changes,...

» distances from other time series

« Classification based on characteristic local patterns
(motif-based, shapelet-based, convolutional neural networks)

« Similarity-based classification
(nearest neighbor and its extensions, such as hubness-aware classifiers)

 Hidden Markov Models
 Deep Learning

- Convolutional neural networks
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(Deep) Neural Networks for
Time Series Classification



Neural Networks

By Vertebrate-brain-regions.png: Looie496derivative work: Looie496
(Vertebrate-brain-regions.png) [Public domain], via Wikimedia Commons

By user:Looie496 created file, US National Institutes of Health, National
Institute on Aging created original [Public domain], via Wikimedia Commons
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Deep Feed-Forward Neural Networks
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By Horst Frank - photo taken by Horst Frank, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=14209

/ .
/i . 2

Deep Learning in a Nutshell

« What was wrong with backpropagation in 19867 2
(Geoff Hinton, ,Deep Learning®, May 22, 2015) =

- Our labeled datasets were thousands of times too small.
- Our computers were millions of times too slow.

- We initialized the weights in a stupid way.

- We used the wrong type of non-linearity.

* From “conventional” neural networks to deep learning

- Size and structure of the network: few layers — many layers

- Activation function: sigmoid — rectified linear unit (ReLU)

- Loss function: quadratic loss — cross-entropy

- Initialization of weights: random — (unsupervised) pre-training

- Size of training data, much more memory, distributed computation, GPUs...

- New regularization techniques:
“sparsity-enforcing” regularisation terms, drop-out, early stop
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Convolution®

Input of the convolution (time series):

-0.8-0.5-0.2 0.2 06 0.8 0.9 1.0 0.9 0.7 0.2 -0.3-0.9-0.2 0.5 0.6

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution®

Input of the convolution (time series):

-0.8-0.5-0.2 0.2 06 0.8 0.9 1.0 0.9 0.7 0.2 -0.3-0.9-0.2 0.5 0.6

Filter (i.e., a set of weights)

1 0 -1 0 1

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution®

Input of the convolution (time series):

-0.8 -0.5-0.2 0.2 0.6{0.8 0.9 1.0 0.9 0.7 0.2 -0.3-0.9-0.2 0.5 0.6

Filter (i.e., a set of weights)

1 0 -1 0 1

A - g
~"

Output (,,Coniolved“ time series)
0

(-0.8)x1 + (-0.5)x0 + (-0.2)x(-1) + 0.2x0 + 0.6x1=0

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution®

Input of the convolution (time series):

-0.8|-0.5-0.2 0.2 0.6 0.8/0.9 1.0 0.9 0.7 0.2 -0.3-0.9-0.2 0.5 0.6

Filter (i.e., a set of weights)

1 0 -1 0 1

A - g
~"

Output (,,Convolv%d“ time series)

0 0.1

(-0.5)x1 + (-0.2)x0 + 02x(-1) + 0.6x0 + 0.8x1=-0.1

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution®

Input of the convolution (time series):

-0.8-0.5-0.2 0.2 06 0.8 0.9 1.0 0.9 0.7 0.2/-0.3-0.9-0.2 0.5 0.6

Filter (i.e., a set of weights) J
1 0 -1 0 1
Output (,convolved® time series) i

0O 01 01 04 06 0502 0 -0208 1.6 0.5

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution®

Input of the convolution (time series):

0 -08-05-0.202 06 08 0910 09 0.7 0.2 -0.3-09-0.2 05 0.6 0 O

Filter (i.e., a set of weights)

1 0 -1 0 1

Output (,convolved® time series)

06 0/. 0 01 01 04 06 05 02 0 -0208 16 0.5-14-0.8

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution®

Input of the convolution (time series):

o

0 -08-0.5-0.202 06 08 0910 09 0.7 0.2 -0.3-09-0.2 0.5 0.6

o
o

0 09 03 01-02050301 0 02-01-0204 0.5 0.5 0.6 0.3

o
)

Filter (i.e., a set of weights)

1 0 -1 0 1
0.5 0.3 0.1-0.2-0.3

Output (,convolved® time series)
06 1.0 04 01 0.1 0.5 09 0.7 04 O -0405 14 0.7 -1.0-0.3

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.

Buza Time Series Classification and its Applications



Convolution®

100 e

075 ~— =
050 / /______,-

n .. o /
: 00

-0.25 L

0 g /
050 g
-0.75

8 /
- 100 ; 7
075 / T T T
. 0 2 10 12 14 16
FlILGI \I-G., A OGL VI vwoiyr /

025 4

1 0 -1 0 1

-0.25

-0.50

0.75

Output (,convolved® time -

1.00

06 0/. 0 01 01 04 06 05 02 0 -0208 16 0.5-1.4-0.8

* Remark: while being conceptually the same as traditional convolution in mathematics,
the convolution used in neural networks is slightly different in terms of technical details.
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Convolution and Max Pooling*

Input of the convolution (time series):

0 -08-05-0.202 06 08 0910 09 0.7 0.2 -0.3-09-0.2 05 0.6 0 O

Filter (i.e., a set of weights)

1 0 -1 0 1

Output (,convolved® time series)

0.6 0.7 6 0. 5 0 2 -0 5 -0.7-0.8
Max poollng\ \ / /
06 0.8

* Strictly speaking, max pooling has nothing to do with convolution, however,
in convolutional neural networks (CNNs), the convolutional layer is often followed by a
max pooling layer.
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Convolutional Neural Networks

input
layer

1 convolution

convolutional
layer
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Convolutiona

1 convolution

=

convolutional

layer

Neural Networks
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Convolutiona

input
layer

1 convolution

pooling

=

convolutional
layer

-

Neural Networks

pooling
layer
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Convolutiona

1 convolution

=
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Neural Networks
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Convolutiona
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=

convolutional
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pooling convolutional
layer and pooling
layers

7\
( )
A\
( _
A\
\ ( N\
A VRN ( )
T\ ( =
( T\
( b
71\ "
( []
[]
(

last
pooling
layer
fully
connected
layer(s)

Buza

Time Series Classification and its Applications

53



Convolutional Neural Networks
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Convolutional Neural Networks

‘," A \ 7,3‘ O N/ “\ ‘ n
\X_’ : E \ m - -
4 . (>3 < — |
)} - o) A = PN
) o o JAY0 AU
rl;) | | ‘i/ f: ‘ ( ‘\;7,/‘ | | ‘ f‘\ / ‘\ \_/ | \:
r.:) t | E
1‘.
JjjT some more Jjjj

2| pooling convolutional last output
layer and pooling pooling layer
jjjT layers layer

input convolutional Conf::g}c;ted

| |

ayer ayer avor(s)

convolution pooling every unit is connected with
(weight sharing) (no weights) every unit of the next layer
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Classification based on Local Patterns

» Motif-based classification
Buza, Schmidt-Thieme (2009): Motif-based classification of time series with Bayesian networks and SVMs,

Advances in Data Analysis, Data Handling and Business Intelligence. Springer, Berlin, Heidelberg,
pp. 105-114

» Shapelet-based classification

Hills et al. (2014): Classification of time series by shapelet transformation, Data Mining and Knowledge
Discovery, 28(4), pp. 851-881

 Convolutional Networks

lan Goodfellow, Yoshua Bengio, Aaron Courville (2016):
DEEP LEARNINGER  Deep Learning, http://www.deeplearningbook.org
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Dynamic Time Warping



Comparison of Time Series
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Similarity Measures vs. Distance Measures

« Similarity measure

- High value — two time series are similar
- Low value — two time series are different

 Distance measure
- High value — two time series are different (dissimilar)
- Low value — two time series are similar

« Dynamic Time Warping (DTW, next slides) is a distance measure
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Dynamic Time Warping

Levenshtein distance (text mining),
Smith-Waterman distance (bioinformatics)

El-} Lo - b)
I 5 3.8 2 1.30.8
I I I I
Cost of )
transforming
the marked —

parts of x4

N H and :1:2

1

— Cost of tranbformmg
3 the entire =, into
2

[ the entire xs. -
| | | | | |

15

16

23

Lt [ I—‘|

10

171!...

The matrix
15 filled in
this order.

11

181 ...

o

12

191 ...

13

20

=1

14

21

Sakoe, Chiba (1978): Dynamic programming algorithm optimization for spoken word recognition,
IEEE transactions on acoustics, speech, and signal processing, 26(1), pp. 43-49.
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Dynamic Time Warping

a)

Notes:

« DTW has many variants:

- additional elongation cost, various internal distances, etc.

= = W Ly bk

L2 -

1 1 3 4 3 1
olo|2|5]7]7
1113l s]5]
3301|2244

5 501|224
slsl2l1]2]s
s|s8lalals n

|3 — 3| + min{2,3,4} = 2

« DTW is not a metric (does not fulfil metric axioms).

Buza
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Multivariate Time Series:
Recognition of Handwriting on a Touchscreen

\ A /*S, /

X X X

(- 44— )

Time series (deltaX, deltaY):

(1,-2), (1,-2), (1, 2), (1, 2) (0,-3), (0, -1), (3, 0) (0.5,-1), (1.5, -3), (2, 4)
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1, -2) 41.118
(1’ '2)
(1, 2)
(1, 2)

(1-0.5)2+ ((-2)— (-1) )2
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1, -2) 1.118
(1, -2) 2.236 |
(1,2)
(1,2)

1118+  (1=0.52+ ((-2)= (-1) )
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1, -2) 1.118
(1, -2) 2.236
(1, 2) 5.277 |

(1, 2)

2236+ (1-0.5)2+(2— (-1))2
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Dynamic Time Warping for Multivariate Time Series

(0.5, 1), (1.5, -3), (2, 4)
(1, -2) 1.118
(1, -2) 2.236
(1, 2) 5.277
(1,2) 8.318

5277+ (1—=0.5)2+ (2~ (-1))2
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1, -2) 1.118 , 2.236
(1, -2) 2.236
(1, 2) 5.277
(1, 2) 8.318

1118+  (1—-1.5)2+ ((-2) = (-3) )2
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1,-2) 1118 2,236
(1,-2) 2,236 ,2.236
(1, 2) 5.277
(1, 2) 8.318

1.118+ (1 -1.5)2+ ((-2)— (-3) )?

|

Min {1.118, 2.236, 2.236}
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1, -2) 1.118 2.236
(1,-2) 12236 2.236;
(1,.2) . 5.277 ; (7.261
(1, 2) 8.318

2236+ (1=15)2+(2— (-3))2

|

Min {5.277, 2.236, 2.236}
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3),
(1, -2) 1.118 2.236
(1,-2) 2.236 2.236
(1, 2) : 5.277 ; 1 7.261
(1, 2)  8.318 12.286

5277+ (1-15)2+(2- (-3) )2

|

Min {5.277, 7.261, 8.318}

(2, 4)
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), (2, 4)
(1,-2) 1.118 2.236 8.319
(1,-2) 2.236 2.236 8.319
(1, 2) 5.277 7.261 4.472
(1, 2) 8.318 12.286 +6.708 :
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Dynamic Time Warping for Multivariate Time Series

(0.5, -1), (1.5, -3), 2, 4)

(1, -2) 1.118 2.236

(1,-2) 2.236 2:236

(1, 2) : 5.277 :7.261;

(1, 2) 18.318! 12.286
oo

| | Instead of the Euclidean distance,
5277+ ' (1-=15)2+(2- (-3) )2 | we could calculate other distances,
T e 5 such as cosine distance.

Min {5.277, 7.261, 8.318}
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Nearest Neighbor Classification



Example: Handwriting Recognition

\

Bi

t
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,<INN-DTW is an exceptionally competitive classifier..."

... IN spite of massive research effort on time series classification problems. We
arrived at this conclusion after an extensive literature search®

,In Rodriguez & Alonso (2004), the authors use a DTW based decision tree to
classify time series. On the Two Patterns dataset, they report an error rate of 4.9%,
but our experiments on the same dataset using 1NN give an error rate of 1.04% for
Euclidean distance and 0.0% for DTW."

,IN Rodriguez & Alonso et al. (2000), the authors use first order logic rules with
boosting (...), they report an error rate of 3.6%, but our experiments on the same
dataset using TNN-DTW give an error rate of 0.33%."

,In Nanopoulos & Alcock et al. (2001), the authors use a multi-layer perceptron
neural network (...) to achieve their best performance of 1.9% error rate. Using
1NN-DTW on the same dataset gives 0.33% error rate.”

,In Wu & Chang (2004), the authors use a “super-kernel fusion scheme” to achieve
an error rate of 0.79% (...) INN-DTW (...) gives an error rate of 0.33%."

,In Kim & Smyth et al. (2004 ), the authors use hidden Markov Models to achieve
98% accuracy on the PCV-ECG classification problem, but both DTW and
Euclidean distance achieves a perfect accuracy on the same problem.”

, 1 he above list is truncated for brevity.”
Xi et al. (2006): Fast Time Series Classification Using Numerosity Reduction, ICML
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,<INN-DTW is an exceptionally competitive classifier..."

« ,There are dozens of similar examples in the literature. In addition to the above,
there are a handful of papers in the literature that do explicitly claim to have a
distance measure that beats DTW.”

« ,Lei & Govindaraju (2004) claim that DTW gets 96.5% accuracy on the Gun-Point
problem whereas their approach gets 98.0%. However, DTW actually gets 99.0%
on that problem.”

« ,INN-DTW is very hard to beat.”

Xi et al. (2006): Fast Time Series Classification Using Numerosity Reduction, ICML
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Improvements of Nearest Neighbor Classification ...

speeding-up classification and

K

... aim at

making classification more accurate.
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Speed-up techniques



Speed-up Techniques for Nearest Neighbor Classifiation
of Time Series

« Efficient computation of the similarity / distance of time series

« Avoiding the computation of all the distances
(lower bounding, early stopping of DTW-computation)

* Preprocessing techniques (e.g. SAX)

« Numerosity reduction / instance selection
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Constrained DTW

» Calculate only the marked entries of the DTW-

matrix, i.e., the ones that are ,close” to the

diagonal of the matrix

- Sakoe-Chiba band (top)

- ltakura parallelogram (bottom)

- Beam search

- Extreme variant of beam search:

Lucky Time Warping (Spiegel, 2014)

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin

Albayrak (2014): Fast Time Series Classification

under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing

Buza
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Lucky Time Warping (LTW)

Algorithm 1 LTW Distance Measure

Input: @,C ... time series; w... warping window
Output: d... lucky distance

1: 4,5« 1

2: d < (g — ¢;)? {gi,¢; equals Q(i),C(4)}

3: n < length of )

4: m 4+ length of C

5. while (i <n) and (j < m) do

6: if (i+1<mn)and (j+1<m)then

7 ddia + (Git1 — ¢jy1)°

8: end if

9: if (i+1<mn)and (|?+1—3| < w) then
10: dup < (git1 — ¢;)°

11:  end if

12:  if (j+1<m) and (|]j+1—i <w) then
13: dyight — (qi — cj11)°

14:  end if

15:  dmin = min(dgia, dup, dright)

16:  d < d+ dmin

17: i, j < index(dmin) {update position}
18: enci while

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin
Albayrak (2014): Fast Time Series Classification
under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing
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Lucky Time Warping (LTW)

Algorithm 1 LTW Distance Measure

Input: @,C ... time series; w... warping window
Output: d... lucky distance

1: 4,5« 1

2: d < (g — ¢;)? {gi,¢; equals Q(i),C(4)}

3: n < length of )

4: m 4+ length of C

5. while (i <n) and (j < m) do

6: if (i+1<mn)and (j+1<m)then

7 ddia + (Git1 — ¢jy1)°

8: end if

9: if (i+1<mn)and (|?+1—3| < w) then
10: dup < (git1 — ¢;)°

11:  end if

12:  if (j+1<m) and (|]j+1—i <w) then
13: dyight — (qi — cj11)°

14:  end if

15:  dmin = min(dgia, dup, dright)

16:  d < d+ dmin

17: i, j < index(dmin) {update position}
18: enci while

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin
Albayrak (2014): Fast Time Series Classification
under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing
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Lucky Time Warping (LTW)

Algorithm 1 LTW Distance Measure

Input: @,C ... time series; w... warping window
Output: d... lucky distance

1: 4,5« 1

2: d < (g — ¢;)? {gi,¢; equals Q(i),C(4)}

3: n < length of )

4: m 4+ length of C

5. while (i <n) and (j < m) do

6: if (i+1<mn)and (j+1<m)then

7 ddia + (Git1 — ¢jy1)°

8: end if

9: if (i+1<mn)and (|?+1—3| < w) then
10: dup < (git1 — ¢;)°

11:  end if

12:  if (j+1<m) and (|]j+1—i <w) then
13: dyight — (qi — cj11)°

14:  end if

15:  dmin = min(dgia, dup, dright)

16:  d < d+ dmin

17: i, j < index(dmin) {update position}
18: enci while

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin
Albayrak (2014): Fast Time Series Classification
under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing
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Lucky Time Warping (LTW)

Algorithm 1 LTW Distance Measure

Input: @,C ... time series; w... warping window
Output: d... lucky distance

1: 4,5« 1

2: d < (g — ¢;)? {gi,¢; equals Q(i),C(4)}

3: n < length of )

4: m 4+ length of C

5. while (i <n) and (j < m) do

6: if (i+1<mn)and (j+1<m)then

7 ddia + (Git1 — ¢jy1)°

8: end if

9: if (i+1<mn)and (|?+1—3| < w) then
10: dup < (git1 — ¢;)°

11:  end if

12:  if (j+1<m) and (|]j+1—i <w) then
13: dyight — (qi — cj11)°

14:  end if

15:  dmin = min(dgia, dup, dright)

16:  d < d+ dmin

17: i, j < index(dmin) {update position}
18: enci while

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin
Albayrak (2014): Fast Time Series Classification
under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing
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Lucky Time Warping (LTW)

Algorithm 1 LTW Distance Measure

Input: @,C ... time series; w... warping window
Output: d... lucky distance

1: 4,5« 1

2: d < (g — ¢;)? {gi,¢; equals Q(i),C(4)}

3: n < length of )

4: m 4+ length of C

5. while (i <n) and (j < m) do

6: if (i+1<mn)and (j+1<m)then

7 ddia + (Git1 — ¢jy1)°

8: end if

9: if (i+1<mn)and (|?+1—3| < w) then
10: dup < (git1 — ¢;)°

11:  end if

12:  if (j+1<m) and (|]j+1—i <w) then
13: dyight — (qi — cj11)°

14:  end if

15:  dmin = min(dgia, dup, dright)

16:  d < d+ dmin

17: i, j < index(dmin) {update position}
18: enci while

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin
Albayrak (2014): Fast Time Series Classification
under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing
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Lucky Time Warping (LTW)

Algorithm 1 LTW Distance Measure

Input: @,C ... time series; w... warping window
Output: d... lucky distance

1: 4,5« 1

2: d < (g — ¢;)? {gi,¢; equals Q(i),C(4)}

3: n < length of )

4: m 4+ length of C

5. while (i <n) and (j < m) do

6: if (i+1<mn)and (j+1<m)then

7 ddia + (Git1 — ¢jy1)°

8: end if

9: if (i+1<mn)and (|?+1—3| < w) then
10: dup < (git1 — ¢;)°

11:  end if

12:  if (j+1<m) and (|]j+1—i <w) then
13: dyight — (qi — cj11)°

14:  end if

15:  dmin = min(dgia, dup, dright)

16:  d < d+ dmin

17: i, j < index(dmin) {update position}
18: enci while

Spiegel, Stephan, Brijnesh-Johannes Jain, Sahin
Albayrak (2014): Fast Time Series Classification
under Lucky Time Warping Distance, 29th Annual
ACM Symposium on Applied Computing
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Early Stop

This column was
just calculated. If
all the entries in
this column are
larger than d',

we do not need to
calculate the rest
of the matrix.

We want to determine the nearest neighbours of
the time series T*

We are in an intermediate step, i.e., we already
calculated the distance between 7* and some of
the time series of the training data — we know
that the distance between 7* and another time
series 7'is d’

Currently, we are calculating the distance between
T* and the time series T.

If the DTW matrix has only entries being greater
than d' in the column that was calculated last —
stop and consider the next time series

(in this case, T can not be the nearest neighbour
of T* because the distance between 7* and T"is
lower than the distance between T*and T).

If the distance between 7 and 7* turns out to be
less than d' — update d'and T’

Buza
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Nearest Neighbor with Lower Bounding

T* — Time series to be classified

d* — distance of the currently found closest time series

d* —« infinity

for each time series T of the training data

d — estimate distance (T*, T) -e--dis alowerbound,i.e., the

B estimation is done in a way

if d > d*¥ that the true distance is
continue greater than or equal to d

d < DTW(T*, T)

if d < d*
d* < d’

nearest neighbor « t
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Lower Bound for Constrained DTW

Keogh, Ratanamahatana (2005): Exact indexing of dynamic time
warping, Knowledge and Information Systems 7.3, pp. 358.
, Manmatha (2003): Lower-bounding of dynamic time warping 0 5

Rath

Compare time series T:q,.9q and T:c,...C

m

Sakoe-Chiba band, » = warping window size

Define upper and lower time series:

U; = max(qi—r : gitr)

Li = min(qi—r : qiyr)

A lower bound (i.e., a possible implementatior
of the estimate distance function) is:

n lc; — Ul if ¢; > U;
E S lei —Li|l if ¢; <L
i—=1 | O otherwise

L

distances for multivariate time series
Note: notations have been adapted.

10
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Instance Selection (a.k.a. numerosity reduction)

Standard nearest neighbor:
Comparison to all train
time series

Dataset
Time Series Class
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Instance Selection (a.k.a. numerosity reduction)

Standard nearest neighbor: With instance selection:
Comparison to all train Comparison to the selected
time series train time series
Dataset Dataset
Time Series Class Time Series Class
Query /.nﬂ1 Query P T

~ A 1 ~ N
A 2 %2
e . 2
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Hubness

Instance y is a good (bad) k-nearest neighbor of
the instance x if
(1) yis one of the k-nearest neighbors of x, and
(i) both have the same (different) class labels.



Hubness

Instance y is a good (bad) k-nearest neighbor of
the instance x if
(1) yis one of the k-nearest neighbors of x, and
(i) both have the same (different) class labels.
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Hubness

Instance y is a good (bad) k-nearest neighbor of
the instance x if
(i) yis one of the k-nearest neighbors of x, and
(i) both have the same (different) class labels.
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Hubness

Instance y is a good (bad) k-nearest neighbor of
the instance x if
(i) yis one of the k-nearest neighbors of x, and
(i) both have the same (different) class labels.

M

N,

7N

f

0

W

Number of
instances

2.
oy
0
012 3

Occurrence as
nearest neighbor



Hubness

Instance y is a good (bad) k-nearest neighbor of
the instance x if
(i) yis one of the k-nearest neighbors of x, and
(i) both have the same (different) class labels.

The distribution of good (bad) nearest neighbors
Is substantially skewed - good (bad) hubs

MNumber of "
instances ECG200 :::?::EL:‘ TwoleadECG
100 500
20 450
B0 400
70 + 350
B0 -+ 300
50 4 250
40 200
30 150
20 100
10 50
0+ 1 1 1] 1 L
: 0 1 2 3 4 5 6 "F“I"r'_ 0 1 2 3 4 5 6 feix)

Distribution of good 1-nearest neighbors for some ECG datasets

N,

7N

f

0

W

Number of
instances

2.
oy
0
012 3

Occurrence as
nearest neighbor



Instance Selection based on Hubness

Good (bad) occurrence of an instance x is the number of other instances
that have x as one of their good (bad) k-nearest neighbors, denoted as

fE(x) and fz(x) .

Good 1-occurrence score:  fg(x) = fé(.xs)

Relative score:  fr(x) = —

Xi‘s score:  fxi(x) = fL(x) —2fa(x)

A simple instance selection approach (“INSIGHT”):

- rank instances based on one of these scores, and
select the top-ranked instances

K. Buza, A. Nanopoulos, L. Schmidt-Thieme (2011): INSIGHT: Efficient and Effective Instance Selection for
Time-Series Classification, 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining
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Coverage Graphs

Each vertex corresponds to a time series

- x covers y if x contributes to the

correct classification of y a—vAv—A—

- edge:y —x y
Examples: /
- x and w together cover all

‘@
- x cover both y and z A \
coverable vertices =
Instance Selection Problem (ISP) S

- Find a set of vertices with minimal
size that cover all coverable vertices

- ISP is NP-complete

« ISP is equivalent to the Set-covering problem

Buza
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1-Nearest Neighbor Coverage Graphs

» \Vertices are connected with
their first nearest neighbor
if it is a good neighbour

 m-limited Instance Selection
Problem (m-ISP)

y
L
 For 1-NN coverage graphs: ‘\z

- INSIGHT with good N A~
1-occurrence score
maximizes coverage

- select m vertices that
maximize coverage

X%

Buza Time Series Classification and its Applications
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Improving the Accuracy



What is the appropriate number of nearest neighbors?
(Motivating Example)

Ground truth

- “1"is triangle
T A AAﬁ A D - “2”is circle
AAEE AN A T
ADO® LGN A * 1-NN classifier
ADAADAAT A o .
A .. A Bp - “1”is circle — mistake
A 1 ApES. 0
7 N _ ey .
K AA .\ ® 2" is circle — correct
] O « 6-NN classifier
l ) © -
\ O o © - “1”is triangle — correct
.\\ A’ ®
S - “2”Is triangle — mistake
O @ ® P gie —
> « Different £ may be necessary in

different regions
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What is the appropriate number of nearest neighbors?

(Motivating Example)

1-NN

1 Circle
2 Circle

_
1

2

Incorrect
Correct

6-NN

1 triangle
2 triangle

1 Correct
2 Incorrect

Buza
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Individualized Quality Estimation

* |In contrast to the previous (simple) example, meta models do not output a

binary decision, but the likelihood of correct classification, i.e., the estimated

quality of the primary model.

" eta ot or 10 et mode for -
1 Mistake 1005

et mode o [ ta mocel for
1 Comect 1082
2 Mistake 2007
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Individual Quality Estimation

* Primary models (time series classifiers): &~-NN classifiers with DTW
« Meta models (for error estimation): £’-NN regression with DTW (k’= 5)

 For each time series T to be classified:
select k£ with maximal estimated quality

- alternatively: weighted voting according to estimated qualities

ﬁ} predicted
F Quality q(T .k») Select k with K* b class label
: - : ; st estimated =
(time series to Estimation classification

o7 k,) quality
————ly

be classified)

b_h_le\dbn.u
Fa=r, Mahads
ot Trve-Serivn C ks s

K. Buza (2011): Fusion Methods for Time Series Classification
. Peter Lang Verlag, http://www.biointelligence.hu/books.html
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Training Meta Models

. Split labeled training data into D, and D_

. Train the primary model (k-NN) on D,

. Let the primary model predict the labels of D_

« Calculate quality of the predicted labels

. Train meta model M* on D_ using the calculated quality scores as labels

DA 1.3 06 21 1
0.8 0.7 20 2
52136 19 1
D 1.4]08 1.9/ 2 -
1.0 09 21 1
6.3 2.7 20 1
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Training Meta Models

. Split labeled training data into D, and D_

. Train the primary model (k-NN) on D,

. Let the primary model predict the labels of D_

« Calculate quality of the predicted labels

. Train meta model M* on D_ using the calculated quality scores as labels

2
D |13/06/21 1 >
0.8/0.7 2.0 2 1 predicted
52136 19 1 N\ labels
DB 1.4/08 19 2
1.0 09 21 1 |
6.3 2.7 20 1
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Training Meta Models

Split labeled training data into D, and D_

. Train the primary model (k-NN) on D,

. Let the primary model predict the labels of D_

« Calculate quality of the predicted labels

. Train meta model M* on D_ using the calculated quality scores as labels

2
D |13/06/21 1 >
e (0,7 | 230 P 1 lpredicted calculated
S SHO 1) N labels quality
DB 1.4/08 19 2
1.0 09 21 1 |
6.3 2.7 20 1
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Training Meta Models

. Split labeled training data into D, and D_

. Train the primary model (k-NN) on D,

. Let the primary model predict the labels of D_

« Calculate quality of the predicted labels

. Train meta model A* on D_ using the calculated quality scores as labels

2 14108 1.9
DA 1.3/06 /2.1 1 2 >11.0/0912.1
Ui L7 200 1 lpredicted calculated | 6:3]2.7]2.0
2.2|136]1.9] 1 N labels quality I D'B
1.0/09 21 1 I
6.3/2.7 20| 1
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Distance Learning

) RN EEEE [
i r,vs. 7. 0
Ty VS. T [ G R EI O 0

s 1, VS.T, St R 1
y g T > 11 3

Distances of time series pairs

QW B and their respective indicators

\ )
|

Train time series and

their class labels (A or B)
Train

v
e o |- N _, N
L8 17250 6210 | 0.81

—

Test time series
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Hubness-aware Classifiers for Time Series Classification

 hwKNN, hFNN, NHBNN, HIKNN

B e L

| rowds oo
| Lailei . B Fithors

Feature
Selection for- .
" Data and Pattemn
Recognition

£ v

Tomasev et al. (2015): Hubness-aware Classification, Instance Selection and
Feature Construction: Survey and Extensions to Time-Series,

In: U. Stanczyk, L. Jain (eds.), Feature selection for data and pattern recognition,
Springer-Verlag.

http://www.biointelligence.hu/books.html
http://www.biointelligence.hu/course.html

Radovanovic et al. (2010): Time-series classification in many intrinsic dimensions,
Proceedings of the 2010 SIAM International Conference on Data Mining, pp. 677-688
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Evaluation of Time Series Classifiers

« Evaluation protocol

- Test set must be independent
(be careful with trying different hyperparameters!)

- Goal: simulate an application — make realistic assumptions

» Availability of training data (e.g. rare diseases)
« Split data carefully (temporal splits, patient-based splits...)
- Cross-validation

 Evaluation metrics

- Accuracy, AUC, precision, recall, F-measure, AUPR
(be careful when classifying imbalanced data)

- Standard deviation, statistical significance tests
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Selected Applications



Person ldentification based on Keystroke Dynamics

« Duration of a keystroke = the time between pressing and releasing a key

 Mapping into a 60-dimensional vector space

user 1 user 2

s T\ e
--G)\ o o~
Es e
=
28 S - 038
-
B - \
3 0,7

= I 1 I 1 L 2 1 1 ] i

5 10 15 20 25 5 10 15 20 25 0'6

o 2 0,5

8 =
w
£E 2 2 04
ce S
S* 2 03
i
g 2 2 1NN ECKNN PROCESS
-c (=] (=

5 10 15 20 25 5 10 15 20 25
index of keystroke index of keystroke

D. Neubrandt, K. Buza (2017): Projection-based Person ldentification,
Proceedings of the 10th International Conference on Computer Recognition Systems (CORES), Springer.
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Classification of Brain Activity Data

« Electroencephalograph (EEG) data

» Logistic regression using DTW-distance from randomly selected
time series as features

Remaining Selected signals 350000 v
signals / \ ¥
300000 R
L g l ‘
L i W ke wldy
l WM}“ WN@' a,:-*-|'lf":f‘n’~fuJ|_ i\ 250000 x X
o
A X
| 200000 o
MRAW@#\ 3.1 205 - - | i it
Y 150000 ﬁf x,(%(x
i :
ﬂ!ﬂh"llthIﬁ v 174 42 oy T 100000 % M
Y %X !
A ¥ £0000 3;{ X norma
| y|*| ( ,-\ 156 164 oo X + seizure
| g 0
Distances from the 0 100000 200000 300000 400000 500000 600000

selected signals

K. Buza, J. Koller, K. Marussy (2015): PROCESS: Projection-Based Classification of Electroencephalograph
Signals, ICAISC, LNCS Vol. 9120, pp. 91-100, Springer.
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Classification of Brain Imaging Data

by Ptrump16 (Own work) [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)],
via Wikimedia Commons

Functional
— connectivity
strength

Functional images over time Voxelwise time-series ROI-wise time-series

Regina J. Meszlényi, Krisztian Buza, Zoltan Vidnyanszky (2017): Resting State fMRI Functional Connectivity-Based
Classification Using a Convolutional Neural Network Architecture, Frontiers in Neuroinformatics, Vol. 11
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Simple Neural Network Classifier

>

Number of independent
connectwltly features

BT

1
L
No. of hidden neurons

|

o > Fully connected layer with sigmoid non-linearity
v
0 %
| g - Convolution
m =L
m v @ ‘ ReLU non-linearity and drop-out
=
L E
’:‘ :\ - - Fully connected layer with ReLU and drop-out
- ) e
- s . .
. - om Input or layer activation values
g e
[ | [ m Neurons in fully connected layers
o IS
o o Trainable weights for convolution
—
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Deep Neural Network Classifier

> Fully connected layer with sigmoid non-linearity

- Convolution

- ReLU non-linearity and drop-out

(layer 2)

- Fully connected layer with ReLU and drop-out

I

orm Input or layer activation values

o Neurons in fully connected layers

Number of independent
con nectlw'iv features

an Trainable weights for convolution

No. of hidden neurons (layer 1)
|
No. of output n?urons (classes)

No. of hidden neurons
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Connectome-Convolutional Neural Network Classifier

O

Number1 of ROIs

|
Number of ROIs

Numberl of ROIs

Buza

Time Series Classification and its

(layer 2)

)

No. of filters

No. of hlddlen neurons
No. of output neurons (classes)

—)
o
=)
=

Fully connected layer with sigmoid non-linearity

Convolution

ReLU non-linearity and drop-out

Fully connected layer with ReLU and drop-out

Input or layer activation values

Neurons in fully connected layers

Trainable weights for convolution




Classification Results

Path DTW+Path

CORR DTW length length
SVM
Accuracy (%) 54 .1 67.1 64.4 66.4
AUC 0.541 0.672 0.644 0.664
LASSO
Accuracy (%) 60.3 59.6 69.9 69.9
AUC 0.602 0.595 0.699 0.699
Simple net
Accuracy (%) 50 52.1 53 96,2
AUC 0.515 0.505 0.59 0.588
Deep net
Accuracy (%) 50.7 61.6 62.3 61.0
AUC 0.533 0.634 0.635 0.611
CCNN
Accuracy (%) 53.4 65.1 64.4 71.9
AUC 0.521 0.684 0.672 0.746
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Classification Results

Path DTW+Path

CORR DTW length length
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Accuracy (%) 54 .1 67.1 64.4 66.4
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Accuracy (%) 60.3 59.6 69.9 69.9
AUC 0.602 0.595 0.699 0.699
Simple net
Accuracy (%) 50 52.1 53 96,2
AUC 0.515 0.505 0.59 0.588
Deep net
Accuracy (%) 50.7 61.6 62.3 61.0
AUC 0.533 0.634 0.635 0.611
CCNN
Accuracy (%) 53.4 65.1 64.4 71.9
AUC 0.521 0.684 0.672 0.746
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Most Influential ROls

Most influential ROls based on the first convolutional layer’s weights for MCI
classification with CCNN.

(A) Important ROIs based on DTW distance features.

(B) Important ROIs based on warping path length features.

Buza Time Series Classification and its Applications 122



Conclusion



Conclusions

 “No man ever steps in the same river twice,
for it's not the same river and he’s not the
same man.” (Heraclitus)

« Exciting development in sensor technology
turns almost everything into time series

 This may lead to radically new applications

https://commons.wikimedia.org/wiki/File:DonauknieVisegrad.jpg#/media/File:DonauknieVisegrad.jpg
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Bonus:
Some More Slides about Deep Learning




Neural Units

« synaptic summation of inputs, subsequently: activation function f

¢ X, X, . X = inputs of a unit (usually outputs of some other units)
« W, W, ., W = weights ofxl,x2, o X
m .
x,=1 w,= bias weight 5= N e actlvgtlon unit's output
"t function As)
I |

i ﬂ
I g
W ﬂ

7

= >O

Buza
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Activation Functions

T tivation unit's output
x,=1 w, = bias weight = Y W.X: acive
' ’ ¢ ’ Z I function f As)
=0 | |

I I i
I I i
! ¥ |
i : Y
v )l F

4

! LEJ

—4 —2 2

‘m./ -1

A(s)
Activation Functions _ il
— RelU

Linear fls) =s

Sigmoid fis) = (1+e9)!

Hyperbolic tangent fs) = tanh(s)

Softsign Ss) = s((1+]s))h)

Rectifier Linear Unit (ReLU) f(s) = max(0, s)

Softplus fis) = In(1+e%) //

=1 = 1 : e
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Loss Function: Quadratic vs. Cross-Entropy

« Cross-entropy: “average length
of communicating an event from
one distribution with the optimal

code for another distribution”
http://colah.github.io/posts/2015-09-Visual-Information/

* “Cross-entropy (...) allows us to
describe how bad it is to believe
the predictions of the neural
network, given what is actually
true.”

https://www.tensorflow.org/tutorials/mnist/tf/

« Black: cross-entropy
(a.k.a. Conditional log-likelihood,
logistic regression cost function)

d Red : q Uad ratIC IOSS X. Glorot, ¥. Bengio: Understanding the difficulty of training deep feedforward neural networks
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Initialisation of the Weights

« Unsupervised pre-training: autoencoders
e Supervised pre-training:
- Train a network for a different (but somehow related...) task

- Re-use some of the weights
(e.g. weights of the first few convolutional layers)

Inputs Outputs

Network
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,oparsity-enforcing” (,sparsity-encouraging”) Regularisation

* In the example below, all the three models below have the same prediction
performance (on training data)

!
)

. Traditional* regularisation: 2_:

i=0 m

« ,Sparsity-enforcing” regularisation: ;\“’r‘\

m m

> w > wil
1=0 i=0
A
X, fix)y=1x,+0x, 12+0=1 1+0=1
21 o=l fix)=0x, + 0.5 x, 0240.52=0.25 0+0.5=0.5
fix)=033x,+0.33x,  0.33240.332=0.22  0.33+0.33=0.66
y;=0 @ >
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Dropout

7,

AV 2 Dave

-
N

vy A
A/
)

BXXN

(b) After applying dropout.

(a) Standard Neural Net

Srivastava et al. (2014): Dropout: A Simple Way to Prevent Neural Networks from Overfitting,

Journal of Machine Learning Research
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