# Mining and Processing Biomedical Data

Dr. rer. nat. Krisztian Buza adiunkt naukowy Faculty of Mathematics, Informatics and Mechanics University of Warsaw, Poland chrisbuza@yahoo.com

#### **Preprocessing Time Series**

#### **Time Series**

• Sequence of numbers:

10, 12, 13 ...

• Example: observation of the temperature

6:00 am - 10 °C 7:00 am - 12 °C 8:00 am - 13 °C 9:00 am - 15 °C

# **Multivariate Time Series**

- Electrocardiograph (ECG) and Electroencephalograph (EEG) signals
- Several values (observations) at each point of time

Excerpt from the publicly available EEG database at https://archive.ics.uci.edu/ml/datasets/EEG+Database



| Time<br>point | Senor<br>1 | Sensor<br>2 | Sensor<br>3 | Sensor<br>4 | Sensor<br>5 |  |
|---------------|------------|-------------|-------------|-------------|-------------|--|
| 1             | -8.921     | 0.834       | -19.847     | 8.148       | -2.146      |  |
| 2             | -8.433     | 3.276       | -12.522     | 1.801       | -2.146      |  |
| 3             | -2.574     | 5.717       | 1.149       | -2.594      | -1.658      |  |
| 4             | 5.239      | 7.67        | 14.821      | -4.547      | -0.682      |  |
| 5             | 11.587     | 9.623       | 20.681      | -5.035      | 2.248       |  |
|               |            |             |             |             |             |  |

• How to compare two time series?

- How to compare two time series?
- Compare the values one by one:
   first time series: -1.34 -2 3.5 1.7 ...
   second time series: 0.32 -1.5 2.8 0.9 ...

- How to compare two time series?
- Compare the values one by one:
   first time series: -1.34 -2 3.5 1.7 ...
   second time series: 0.32 -1.5 2.8 0.9 ...

- How to compare two time series?
- Compare the values one by one:
   first time series: -1.34 -2 3.5 1.7 ...
   second time series: 0.32 -1.5 2.8 0.9 ...

- How to compare two time series?
- Compare the values one by one:
   first time series: -1.34 -2 3.5 1.7 ...
   second time series: 0.32 -1.5 2.8 0.9 ...
- Problems with this simple approach
  - What if time series are of different length?
  - Shiftings and elongations, i.e., patterns reflecting realworld phenomena may have various length and may begin at (slightly) different position of the time-series
  - Noise

# **Preprocessing of Time Series**

- Fourier transformation
- Aggregation of consequitve values
- Transformation to a symbolic representation
- Moving average
- Normalisation

# Aggregation of consequtive values

• <u>Time series:</u>



# Aggregation of consequtive values

• <u>Time series:</u>



## Moving Average

• <u>Time series:</u>

1.0, 1.2, 1.3, 1.7, 1.7, 1.8, 1.8, 1.9, 1.9, 2.0, 2.1 2.2 ...

Transformed time-series:
 1.38

(Average of the first 5 values)

#### Moving Average

• <u>Time series:</u>

1.0, 1.2, 1.3, 1.7, 1.7, 1.8, 1.8, 1.9, 1.9, 2.0, 2.1, 2.2, ...

• <u>Transformed time-series:</u> 1.38, 1.54,

#### Moving Average

• <u>Time series:</u>

1.0, 1.2, 1.3, 1.7, 1.7, 1.8, 1.8, 1.9, 1.9, 2.0, 2.1 2.2 ...

• <u>Transformed time-series:</u> 1.38, 1.54, ...

#### Normalisation

• <u>Time series:</u>

1.0, 1.2, 1.3, 1.7, 1.7, 1.8, 1.8, 1.9, 1.9, 2.0, 2.1 2.2 ...

- Average of all the values: 3.2
   Standard deviation of all the values: 1.5
- Normalised time-series:
   -1.46, -1.33, -1.26 ...
   (1.0 3.2) / 1.5 = -1.46

#### Dynamic Time Warping (DTW)

# Proximity measures for time series

- Similarity measures and distance measure
- Similarity measure
  - High value  $\rightarrow$  two time series are similar
  - Low value  $\rightarrow$  two time series are different
- Distance measure
  - High value  $\rightarrow$  two time series are different (dissimilar)
  - Low value  $\rightarrow$  two time series are similar
- Dynamic Time Warping (DTW) is a distance measure

#### Example

x\*: 0, 0, 0, 1, 3, 0, -2, -1, 0, 0, 0
x1: 0, 0, 2, 4, 1, -1, 0, 0, 0, 0, 0
x2: 0, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2





b)

| 1 | 8  | 15 | 22 | The positions<br>of the matrix<br>are filled-in<br>according to |  |  |
|---|----|----|----|-----------------------------------------------------------------|--|--|
| 2 | 9  | 16 | 23 |                                                                 |  |  |
| 3 | 10 | 17 |    |                                                                 |  |  |
| 4 | 11 | 18 |    |                                                                 |  |  |
| 5 | 12 | 19 |    |                                                                 |  |  |
| 6 | 13 | 20 |    |                                                                 |  |  |
| 7 | 14 | 21 | 1  |                                                                 |  |  |



DTW-distance of the time series  $x_1$  and  $x_2$ 



DTW-distance of the time series x<sub>1</sub> and x<sub>2</sub>





DTW-distance of the time series  $x_1$  and  $x_2$ For example, for this entry, we record that the yellow entry had the minimum out of the three entries that were considered while filling-in this entry.