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Abstract: Due to the decreasing cost and wide availability of sensors that measure the
change of a quantity over time, machine learning methods focusing on time-series have gained
increasing attention during the last few decades. In domains where time-series databases are
only emerging, adequate amounts of data annotated by human experts might not be available
due to the associated high expenses and required effort. Semi-supervised learning techniques
are able to alleviate some of these problems. We exploit the relation between hubness—
a phenomenon emergent in time-series data sets due to their high dimensionality—and the
effectiveness of semi-supervised learning. We evaluate various hubness-based indicator values
on 44 publicly available data sets whether they can predict the effectiveness of semi-supervised
learning. We also investigate the use of hubness-based indicators in choosing between two
semi-supervised learners for time series. Our results show that selection of the appropriate
learning method is often possible based on indicators available a priori, without labelling the
whole data set.
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1 Introduction

Due to the decreasing cost and wide availability of sensors that measure the change of a quantity over
time, machine learning methods focusing on time-series have gained increasing attention during the last
few decades. Huge amounts of time series data became available. For example, in the financial domain,
even the storage of time-series data is challenging [10].

One of the most prominent tasks in machine learning is classification. Applications for time series
include e.g. handwriting, speech [15] and sign language recognition, signature verification [6] and medical
diagnosis based on electroencephalogram (EEG, “brain wave”) and electrocardiograph (ECG) signals [2].
The construction of classifiers requires review and labelling of data by human experts. The sheer size of
data sets allows such processing for only a fraction of available data. This fraction may not represent the
whole data set very well, which can lead to suboptimal classifiers.

By combining both labelled and unlabelled data, semi-supervised learning can improve classification
accuracy. However, semi-supervised learners usually require the data set to have a certain structure.
Several learners are based on the cluster assumption: instances similar to each other have similar labels
too. This property is related to hubness, the tendency of instances to cluster around a few “hubs” [12, 13].
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In this paper, we investigate the ability of indicators derived from hubness to discriminate between
data sets in which semi-supervised learning leads to classification accuracy improvement—i.e. the cor-
responding assumption holds—and those in which it does not. We especially focus on measures that
are computable a priori, without first labelling the whole data set. We also attempt to choose between
two semi-supervised learners for time series, Wei’s algorithm [19] and SUCCESS [9]. We also propose
modified hubness measures that try to capture the properties of these learners.

We performed experiments on 44 publicly available data sets [7]. Our results show that, in many cases,
selection of the appropriate learning method is possible based on indicators available a priori. However,
selection of the most descriptive indicator is still scope of future work.

2 Background

In this section, we briefly review some of the most closely related works concerning self-training, k-nearest
neighbour classification, semi-supervised time series classification and hubness. For an in-depth review
of semi-supervised learning techniques, we refer to [16, 23] and the references therein.

2.1 Semi-supervised learning

Classical machine learning tasks are said to be either supervised or unsupervised. In unsupervised
problems—e.g. clustering—a set of instances U = {x;}?_; is given to the learning algorithm. The
output is a set of clusters of similar instances found. In contrast, supervised learners take labelled in-
stances L = {(z;,4:)}. In classification problems the discrete label y; signifies which class x; belongs to.
In the training stage a predictor §(-) is constructed from L which is sought to estimate (class-) labels of
instances with labels unknown to us.

Labelling instances is usually a tedious process which must be performed by a human expert with
domain knowledge. Therefore, while unlabelled data is abundant, labelled data is often scarce and
expensive. Semi-supervised algorithms attempt to learn from both labelled (L) and unlabelled (U) data
even when the available labelled data does not represent the overall distribution and structure of labels.
Thus it is possible to reduce the amount of labelled data—and effort of human expert—required for
accurate prediction.

Self-training Self-training is one of the most common semi-supervised learning methods. It is a wrap-
per method around a supervised classifier.
Self-training trains a sequence of supervised models by the following iterative process:

Let Ly = L the initial training set and ¢ = 0.

Train the supervised learner on L;.

Assess the certainty of classification by the supervised learner for each instance.

Construct the next training set Ly taking the certainty estimates into account. If an instance is
added to Lyt that was not in L;—i.e. its label is yet unknown—it takes whatever label is predicted
by the model trained in Step 2.

5. Let t =t + 1 and go to Step 2 unless some stopping criterion is satisfied.

Ll

The supervised classifier is gradually trained using its own output. In the simplest case, L;y; is
constructed by appending some of the most certainly classified unlabelled instances along with their
predicted labels to L;. More elaborate methods include e.g. Yarowsky’s algorithm [21].

2.2 Time-series classification

Time-series are temporal sequences of scalar- or vector-valued measurements.
In time-series classification problems, a time-series x is associated with a class label y(z). Prediction
of this class label is sought. A competitive—and in some cases, even better than many more complicated



approaches—method of time-series classification is the nearest-neighbour classifier with Dynamic Time
Warping [5]. Dynamic Time Warping (DTW) [15] is a distance measure for time-series: a function
dptw (-, ) assigns a numeric value of dissimilarity to a pair of time-series.

k-nearest neighbour classifier We can predict the label of a time series x with the k-nearest neigh-
bour (k-NN) classifier by looking at the class of its k nearest (according to Dynamic Time Warping)
neighbours in the set of time-series with known labels—the training set in supervised learning—L. Specif-
ically, 1-nearest neighbour (1-NN) sets the prediction to the class label of the instance in L which is the
least dissimilar to x.

k-nearest neighbour graph A useful device in k-nearest neighbour classification is the nearest neigh-
bour graph [1], which gives insight to what instances influence the classification of other instances most.

Definition 1 Let us define the k-nearest neighbour coverage graph of a set of instances X = {x;} as the
directed graph G% = (X, E) which contains the edge (xs,2;) between two instances if and only if x; has
x; among its k nearest neighbours w.r.t. some distance function d(-,-).

2.3 Semi-supervised methods for time-series classification

There are surprisingly few works on semi-supervised classification of time-series. Wei and Keogh proposed
a method based on self-training with 1-nearest neighbour [19], which was extended by Ratanamahatana
et al. [14] with a new stopping criterion. In our recent work [9], we applied similar principles to construct
a classifier based on constrained classification, which performs better on many data sets. We call this
approach SUCCESS: Semi-sUpervised ClassifiCation of timE-SerieS.

Other, more complicated semi-supervised learners include k-means and principal component analysis
by Nguyen et al. [11] and self-training with Hidden Markov Models by Zhong [22].

We will now illustrate the learners considered in this study in more detail.

Wei’s algorithm Wei’s algorithm [19] applies 1-nearest neighbour for time-series with a self-training
protocol. Classification certainty is determined by the DTW-distance of the unlabelled instance and the
closest labelled time-series. The closer is an instance to its labelled neighbour, the more certain classifi-
cation is expected to be. The training set is grown by one instance at a time. With Ratanamahatana’s
stopping criterion [14] for multiple—i.e. more than two—classes, the algorithm stops when all available
unlabelled time-series become labelled.

SUCCESS Our classifier, SUCCESS is based on constrained hierarchical agglomerative clustering. Hi-
erarchical clustering with constrains was shown to improve clustering accuracy compared to traditional
hierarchical clustering [8]. The approach can be summarized in the following steps:

1. When the algorithm starts, each instance—labelled or unlabelled—forms a cluster of one element.

2. Clusters are iteratively merged. At each step the two closest clusters are merged into a new cluster.
The distance of clusters is determined by single link: it is the DTW-distance of the closest pair of
elements in the two clusters. Formally, d(C1, Ca) = ming, ec, asecc, dorw (21, Z2).

3. If two clusters both contain a labelled instance, they will not be merged with each other. The
search for the closest cluster pair continues until two mergeable clusters are found. Effectively, we
have a cannot-link (CL) constraint [18] for each pair of labelled time-series that forbids them from
being in the same cluster.

4. When no more clusters can be merged, each resulting cluster contains exactly one labelled instance.
We refer to these labelled time-series as seeds. Prediction output for unlabelled time-series in each
cluster is the class label of their associated seed.

5. The initially labelled instances and the unlabelled instances enhanced with predicted class labels
form the training set for 1-nearest neighbour. The resulting classifier, which can predict labels for
unseen instances, is hence analogous with the final classifier in Wei’s self-training algorithm.



Relationship between Wei’s algorithm and SUCCESS Let us now consider the complete graph of
all instances, labelled or unlabelled, G with edge weights w; ; = dprw (z;, ;). Without loss of generality,
let us denote the labelled time-series—seeds—L = {x;}!_,, i.e. the first £ known instances are labelled.
The rest of the instances in the training set U = {x;}}_,. ; are unlabelled.

Definition 2 A set of trees T = {T;} is a spanning forest of G if the following properties hold: (i) There
are exactly as many trees as labelled time-series: |T| = £. (i) For each labelled time-series there is exactly
one corresponding tree which contains it: V1 < i < {:x; € V(T;). (iii) The sets V(T1),V(Tz),...,V(T)
together form a disjoint partition of V(G) = LUU.

Given a spanning forest, transductive classification of U may be performed by assigning the class label
of the corresponding seed to all the unlabelled instances of trees.

Definition 3 The weight of a spanning forest is the sum of their edge weights,

WAT) = Zf:l ZeEE(Ti) w(e) (1)

Definition 4 A minimum spanning forest is a spanning forest of minimal weight.

Now let us extend G with super-vertex * to form G*, i.e. V(G*) = V(G) U {x}. The super-vertex is
connected to the labelled time-series with zero-weight edges,

E(G*) = E(G)U {{zs %} :1<i <@, w({z,x})=0 2)

If all the edges of G have strictly positive weight, a minimum spanning tree of G* that contains all
0-weight edges can be converted into a minimum spanning forest of G by removing : If there were two
seeds in the same tree of the resulting forest, the minimum spanning tree would contain a circle; which
is a contradiction. Moreover, the resulting tree cannot have greater weight than a minimum spanning
forest of G.

Wei’s algorithm is analogous to running Prim’s algorithm [3] on G* and classifying the unlabelled
instances by the corresponding minimum spanning forest of G. In contrast, SUCCESS uses Kruskal’s
algorithm to achieve the same goal.

2.4 Hubness

Hubness is a phenomenon emergent in data sets of high dimensionality [12]. In such data sets some
instances, which are called hubs, are among the nearest neighbours of surprisingly many other instances
and therefore influence classification of those.

The presence of good hubs with class labels equal to their neighbours’ may aid classification [1]. In
contrast, bad hubs, which have a different class label than their neighbours, are especially problematic
because they are responsible for a large number of misclassifications. Hubness occurs in many real-world
time-series data sets [13].

Measuring hubness Radovanovic et al. [13] developed a framework for characterizing hubness:

Definition 5 The k-occurrence score g]k\, of an instance x is the number of (other) instances which have
it among their k nearest neighbours, i.e. the out-degree of x in G%;.

The extent to which hubness is present in a data set may be determined by observing the k-occurrence
scores. In the presence of strong hubness, the distribution of g% is highly skewed: a handful of instances
have exceptionally large k-occurrence. Therefore, the skewness—or standardized third moment—S [g’fv]
is and indicator of overall hubness.

Definition 6 The bad k-occurrence score g% (z) of an instance x is the number of instances that have a
different class label than x but have x among their k nearest neighbours.



Definition 7 The normalised total bad k-occurrence score BN & is the number of bad k-occurrences
divided by the number of all k-occurrences, i.e.
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BN r measures bad hubness in the data set.

3 Hubness and semi-supervised learning for time-series

When a semi-supervised learning algorithm is selected, assumptions are implicitly taken about the re-
lationship of labelled and unlabelled data. If our assumptions are wrong, unlabelled data may decrease
classification accuracy [17]. For example, the cluster assumption states that two instances that are sim-
ilar to each other have similar labels. High hubness and high bad hubness indicates cluster assumption
violation (CAV) [13]. This violation hurts both supervised and semi-supervised learners.

One could determine whether semi-supervised learning improves classification accuracy by splitting
the available labelled data into a training set and test set. By leaving out the test set from classifier
training phase, classifier output can be fairly compared to the true class labels of the test set. However,
if the quantity of labelled data available is small, this comparison may not be a good estimate of true
classification accuracy. Therefore, other devices are needed for a priori estimation of semi-supervised
classification accuracy and selection of appropriate learner.

We will now examine if hubness is related to the success of semi-supervised learning strategies and
introduce two new measures of hubness, which also take semi-supervised nearest-neighbour learning
methods such as Wei’s self-training algorithm [19].

3.1 Transitive (semi-supervised) hubness

In Subsection 2.3 we have seen that if a labelled instance can influence the classification of its unlabelled
neighbours. If a labelled hub has some unlabelled neighbours in the training set that are themselves hubs,
it influences the classification of those unlabelled hubs’ neighbours. The labelled hub hence can indirectly
influences the classification of a lot more time-series than in traditional supervised classification.

This phenomenon can be illustrated by the transitive closure G%y of the k-nearest neighbour graph
G%;. In G, hubs are connected to all those instances of which the classification they influence.

Definition 8 The transitive k-occurrence score gk (x) of an instance x is its out-degree in G, i.e.
the number of time-series that are accessible from x in G%;.

The skewness S[gh ] of g%\ quantifies the extent of “transitive” hubness in a data set. The indicators
of “transitive” bad hubness can also be constructed analogously to the non-transitive case.

Definition 9 The transitive bad k-occurrence score gk (z) of an instance x is the number of time-series
that are accessible from x in G%; but have a different class label.

Definition 10 The normalised total transitive bad k-occurrence score T BN, is the number of bad tran-
sitive k-occurrences divided by the number of all transitive k-occurrences, i.e.

et ZIGX 9?3(37)
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3.2 Hubness-based indicators

By a hubness-based indicator of semi-supervised classification accuracy, we mean a quantity derived from
the hubness present in the data set that helps to differentiate between two groups of data sets. We will
refer to these group as “better” and “worse”.

Our first research question is whether semi-supervised learning for a data set is preferable over tradi-
tional supervised learning. In this case, semi-supervised learners outperform supervised one on data sets
in the “better” group, while the converse is true for the “worse” group.

Our second research question refers to the choice of a semi-supervised learner. Here the “better” group
is defined to contain data sets where SUCCESS outperforms Wei’s algorithm. Due to the relatively small
number (44) of data sets on which we conducted our experiments, data sets are included regardless
semi-supervised learning is preferable for them at all.

We use skewness indicators S[g%] and S[g% ] may be calculated a priori without knowing any class

labels as they are based on k-occurrence scores. In contrast, normalised bad hubness indicators BN k
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and TBNj, can only be determined when class labels for all the instances are known and therefore, in
practical applications, are less useful for estimating semi-supervised learning accuracy.

3.3 Measuring indicator quality

We selected two methods—which we refer to as “meta-measures” for they quantify properties of hubness
measures—of determining hubness-based indicator quality.

We determined whether the indicator value for the “better” and “worse” groups has significantly
different mean by statistical two-tailed ¢-test. This simulates discrimination between the “better” and
“worse” groups by fuzzy methods, e.g. Gaussian mixture models.

Another method we employed simulates discrimination based by simple thresholding. In other words,
if we denote the indicator value for a particular data set X by I(X) and the threshold by T, X is predicted
to belong to the “better” when I(X) < T. We evaluated such clusterings generated by some threshold T
with normalised mutual information, which is also called symmetric uncertainty [20]. Formally,

H(Q) + H(w) — H(Q,w) )
HOQ) + Hw)

U(T) =2

where € is the distribution of the “better” and “worse” groups and w is the distribution associated with
the threshold, while H(Q2), H(w) and H(2,w) are the entropies of 2, w and their joint distribution.

For each evaluated indicator, we calculated the threshold Tjest with the largest mutual information
U(T). We use the maximal value Upax = U(Thest) as the second evaluation criterion for hubness-based
indicators.

4 Experiments

We used a collection of 44 publicly available time-series data sets [7] from various real-world domains
to demonstrate how hubness effects semi-supervised time-series classification. These data sets have been
widely used in the literature, see e.g. [1, 4, 5, 9, 13].

We measured performance of three algorithms. Each of these algorithms used Dynamic Time Warping
as the distance function and operated in an instance-based manner: (i) We selected the ordinary 1-nearest
neighbour (1-NN) supervised classifier as a baseline. Thus it is possible to take into account that some
data sets are more difficult to classify by instance-based methods because of cluster assumption violation
phenomena, such as bad hubness. In cases where semi-supervised learning is effective, it should at least
outperform this simple, albeit state-of-the-art algorithm. (ii) The first selected semi-supervised learner
was the self-training method suggested by Wei [19]. (iii) We also considered SUCCESS, a semi-supervised
time-series classifier with a hybrid approach of constrained clustering and nearest neighbour classification.

We selected k& = 10 for hubness measures. This value was also used in a previous study by Radovanovic
et al. [13]. Because transitive closures of such nearest-neighbour graphs would be extremely dense, we



opted for £k = 1 in the case of transitive hubness measures. Therefore, the following hubness-based
indicators were tested: S[gy’], BN19, S[gty], TBN1.

4.1 Comparison protocol

Experiments were ran separately on each of the 44 data sets.

The instances were partitioned into three disjoint subsets: (i) Labelled data L was 10% of the instances,
the initially labelled training set of the semi-supervised algorithm. (ii) Unlabelled data U was 80% of the
instances. The instances themselves were available at training time, however, their labels were not. The
baseline 1-nearest neighbour learner, being a supervised algorithm, did not take advantage of this data.
(iii) Test data was the remaining 10%. We evaluated the misclassification ratio of the learners using the
these instances, i.e. the fraction of instances that had their class labels predicted wrongly.

This partitioning simulates a scenario in which a vast amount of time-series are available, but—due to
shortage of resources—class labels can be produced for just a fraction of them. Semi-supervised learning
may exploit the knowledge in the instances with missing class labels. The evaluated task was inductive,
i.e. we wished to classify time-series entirely absent from the training stage.

We repeated each experiment 10 times with a different partitioning each time. We report the average
misclassification ratio on each data set in Table 1, along with hubness measurements. The “winning”
classifier with the smallest misclassification ratio is shown in bold type. We checked statistical significance
of differences with a two-tailed paired ¢-test with confidence value o = 0.05.

Both in the problem of choosing between supervised and semi-supervised learning and choosing be-
tween Wei’s algorithm and SUCCESS data sets were sorted into “better” and “worse” groups depending
on misclassification ratio comparison. We produced additional groupings with only significant differences.

4.2 Results

Table 3 shows meta-measure values for the tested data set groupings and hubness-based indicators.
Skewness measures S[ga’] and S[ga-»] generally have lower p-values and competitive normalised mutual

information values compared to bad hubness measures BN 10 and TBN1. An exception is the case of
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supervised versus semi-supervised learning with only statistically significant differences, where T BN,
was better in discriminating between the “better” and “worse” group than any other indicator.

Interpreting the results is somewhat difficult, because in some cases the p-value based and mutual
information based evaluation criteria selected different indicators as the best discriminator. Additionally,
the exclusion of not highly significant differences changed meta-measures considerably. The latter effect
may be attributed to the drastic reduction of data points—i.e. time series databases with classification
accuracy differences—by the exclusion. A larger number of labelled time-series databases from various
real-world domains would be needed for drawing stronger conclusions.

5 Conclusion and future work

We performed experiments on 44 publicly available time-series data sets concerning the relationship
of hubness—a phenomenon emergent in time-series databases—and the accuracy of semi supervised
learning—a learning method which could partially alleviate the need tedious and costly manual labelling
of data in classification problems. We tested the use of measures derived from hubness as indicators
to choose between supervised and semi-supervised learning and to choose between two time-series semi-
supervised learning techniques. We found that with the exception of a single scenario, indicators that
can be calculated a priori without manually labelling the whole data set are competitive with or better
than indicators of bad hubness that can be determined only a posteriori.

We also proposed two novel measures of transitive hubness in a data set that take the properties of
time-series semi-supervised learning methods into account. We found these measures competitive with
the respective traditional hubness measures.



Table 1: Indicators of hubness along with misclassification ratios for a supervised baseline (1-NN) and two
semi-supervised (Wei, SUCCESS) learning algorithms. Boldface shows absolute “winner” with smallest
misclassification ration, while italics show the better semi-supervised algorithm. The + sign indicates
statistically significance. The + sign left of the slash (/) corresponds to significant improvement over
1-NN, while + sign on the right corresponds to significant difference between the two semi-supervised
algorithms.

Dataset Number of | Hubness Misclassification ratio

classes | S[gN] BNy Sgn] TBN; | 1-NN Wei SUCCESS
50words 50 | 0.659  0.362 | 2.535 0.197 0.439 0.436 0.414
Adiac 37 | 0.357  0.518 | 1.946 0.377 0.571 0.601 0.595
Beef 5 -0.248 0.620 | -0.125 0.350 0.617 0.617 0.600
Car 4 1.567 0.392 | 1.768 0.243 0.417 0.458 0.450
CBF 3 1.435 0.001 | 4.235 0.000 0.001 0.005 0.003
ChlorineConcentration 3 0.503  0.316 | 2.954 0.004 0.369 0.350 0.101+/+
CinC ECG torso 5 0.079  0.011 1.232 0.000 0.031 0.019 0.001+/+
Coffee 2 -0.271  0.361 1.004 0.051 0.520 0.500 0.460
Cricket_X 12 | 0.380  0.331 1.800 0.192 0.450 0.465 0.444
Cricket_Y 12 | 0.457 0.349 | 1.600 0.189 0.379 0.433 0.396 - [+
Cricket_Z 12 | 0.374  0.332 | 1.529 0.184 0.429 0.459 0.423 - |+
DiatomSizeReduction 4 0.357  0.014 1.101 0.006 0.038 0.031 0.025
ECG200 2 0.241 0.197 | 1.949 0.118 0.180 0.190 0.195
ECGFiveDays 2 -0.005 0.036 | 0.730 0.009 0.078 0.053 0.030+/ -
FaceFour 4 0.402  0.141 1.719 0.048 0.236 0.182 0.200
FacesUCR 14 | 0.751 0.053 | 2.081 0.018 0.079 0.083 0.070 - |+
Fish 7 0.831 0.328 | 2.684 0.189 0.354 0.403 0.434
GunPoint 2 0.307  0.052 | 0.820 0.024 0.085 0.075 0.045
Haptics 5 0.851 0.609 | 3.654 0.523 0.652+ 0.704 0.730
InlineSkate 7 0.420  0.593 | 1.979 0.380 0.651 0.683 0.663
ItalyPowerDemand 2 0.831  0.051 | 2.163 0.040 0.051 0.066 0.076
Lighting2 2 0.355  0.288 | 1.877 0.173 0.308 0.342 0.317
Lighting7 7 0.392  0.391 | 1.558 0.182 0.493 0.536 0.529
MALLAT 8 1.479  0.027 | 2.805 0.017 0.032 0.042 0.037
Medicallmages 10 | 0.352 0.316 | 1.219 0.184 0.399 0.394 0.393
MoteStrain 2 0.732  0.093 | 1.714 0.063 0.098 0.115 0.107
OliveOil 4 0.382  0.280 | 2.037 0.156 0.367 0.367 0.383
OSULeaf 6 0.626  0.448 | 1.545 0.246 0.473 0.532 0.466 - /+
Plane 7 -0.049 0.009 | 1.489 0.000 0.062 0.038 0.038
SonyAIBORobotS. 2 0.799  0.044 | 2.093 0.026 0.069 0.060 - /+ 0.110
SonyAIBORobotS.I1 2 0.815  0.065 | 2.050 0.022 0.076 0.079 0.088
StarLightCurves 3 1.050  0.090 | 4.353 0.126 0.098+ 0.140-/+  0.200
SwedishLeaf 15 | 0.969 0.235 | 3.451 0.220 0.315+ 0.364 0.379
Symbols 6 0.832  0.030 | 1.852 0.017 0.032 0.025 0.019+/ -
SyntheticControl 6 1.400  0.020 | 3.940 0.010 0.042 0.065 0.045
Trace 4 0.035 0.025 | 1.556 0.000 0.185 0.050 0.000+/ -
TwoLeadECG 2 0.399  0.003 | 1.846 0.001 0.012 0.003 0.001+/ -
TwoPatterns 4 1.007  0.001 | 4.901 0.000 0.008 0.000+/- 0.000+/ -
uWaveGestureX 8 0.773 0.234 | 2.501 0.222 0.254+ 0.284 0.286
uWaveGestureY 8 0.627  0.314 | 2.068 0.258 0.3364+ 0.377 0.377
uWaveGestureZ 8 0.660  0.317 | 2.100 0.279 0.333+ 0.368-/+ 0.385
Wafer 2 0.307  0.005 | 1.154 0.004 0.008 0.009 0.009
WordsSynonyms 25 | 0.659 0.346 | 2.536 0.182 0.406 0.410 0.382+/ -
Yoga 2 0.595  0.119 | 1.752 0.058 0.141 0.152 0.151




Table 2: Summary of experiment outcomes. Underlined algorithm is compared to the other.

Better Equal Worse
Supervised versus All 21 1 22
semi-supervised Significant only 8 30 6
‘Wei versus All 29 2 13
SUCCESS Significant only 8 29 7

Figure 1: Data sets with differences between the considered supervised and semi-supervised learning
algorithms. A single data point is a data set, while the horizontal and vertical axes show the values
of k-occurrence and bad k-occurrence based indicators, respectively. Bold symbols indicate statistical
significance (o« = 0.05). Semi-supervised learning is considered better than supervised if at least one
semi-supervised algorithm performed better than supervised 1-NN. Optimal threshold provides maximum
normalised mutual information selection of data sets where the underlined learner is beneficial (thresholds
are selected one by one, i.e. only one indicator is used for separation at a time).
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Table 3: Hubness-based indicators’ power of discrimination between the “better” and “worse” group.
The values in boldface are the best meta-measure values for a given group of experiments.

(a) Supervised verus semi-supervised

All differences Significant only

S[g]l\?} BN10 S[Q%N} TBN1 S[g]lvo] BN10 S[Q%N] TBN1
Mean “better” 0.378 0.183 | 1.734 0.083 0.439 0.096 | 2.201 0.027
Mean “worse” 0.779  0.238 | 2.423 0.168 0.822  0.300 | 3.021 0.271
p-value 0.001 0.347 | 0.024 0.030 0.030 0.042 | 0.194 0.005
Optimal threshold | 0.080  0.054 | 1.557 0.052 0.503  0.037 | 1.852 0.018
Norm. mutual inf. | 0.204 0.071 | 0.248 0.116 0.410 0.529 | 0.410 0.695

(b) Wei versus SUCCESS

All differences Significant only
Mean “better” 0.527 0.222 | 1.812 0.116 0.465 0.252 | 1.824 0.107
Mean “worse” 0.710 0.223 | 2.525 0.171 0.837 0.150 | 2.848 0.144
p-value 0.101 0.986 | 0.016 0.229 0.056 0.405 | 0.304 0.694
Optimal threshold | 0.752  0.037 | 1.946 0.019 0.626  0.318 | 2.082 0.019
Norm. mutual inf. | 0.154 0.168 | 0.325 0.210 0.607 0.274 | 0.607 0.274

A more extensive study with a larger number of databases from various other domains could be more
decisive concerning which indicator to apply when choosing an appropriate semi-supervised time-series
learner. Another scope of possible future work is the combination of different indicators, both based on
hubness and other properties of time-series databases (e.g. number of instances, number of classes, or
average length of time-series).

While hubness-based indicators could potentially enhance semi-supervised learning in any database
with high (intrinsic) dimensionality, in this study we focused on time-series data sets. Future work could
address hubness-based indicators in various other databases.
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