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Abstract Learning with label noise is an important issue in classification, since it is not
always possible to obtain reliable data labels. In this paper we explore and evaluate a new
approach to learning with label noise in intrinsically high-dimensional data, based on using
neighbor occurrence models for hubness-awarek-nearest neighbor classification. Hubness
is an important aspect of the curse of dimensionality that has a negative effect on many types
of similarity-based learning methods. As we will show, the emergence of hubs as centers of
influence in high-dimensional data affects the learning process in presence of label noise.
We evaluate the potential impact of hub-centered noise by defining a hubness-proportional
random label noise model that is shown to induce a significantly higher kNN misclassifi-
cation rate than the uniform random label noise. Real-worldexamples are discussed where
hubness-correlated noise arises either naturally or as a consequence of an adversarial attack.
Our experimental evaluation reveals that hubness-based fuzzy k-nearest neighbor classifi-
cation and Naive Hubness-Bayesiank-nearest neighbor classification might be suitable for
learning under label noise in intrinsically high-dimensional data, as they exhibit robustness
to high levels of random label noise and hubness-proportional random label noise. The re-
sults demonstrate promising performance across several data domains.

Keywords: classification, label noise, k-nearest neighbor, high-dimensional data, hub-
ness, neighbor occurrence models

Nenad Tomašev
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Üllői út 26 2, 02-097 Budapest, Hungary
chrisbuza@yahoo.com
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1 Introduction

Designing effective and robust supervised learning algorithms for classification in presence
of label noise is an important practical issue, as obtainingreliable data labels is often expen-
sive or simply infeasible due to data size in large-scale systems [18].

Classification noise can be random, feature-dependent or adversarial. Label flip proba-
bilities can be either uniform and symmetric or depend on particular classes and class pairs.
The simplerandom classification noise(RCN) model was first introduced in [2]. It is a
model of how non-adversarial noise might affect the data. Given a training setT = (X,Y )
of labeled examples and a valueη ∈ (0,1/2), Dη,T denotes the distribution corresponding
to T corrupted with random classification noise at rateη. A draw fromDη,T is equivalent
to a uniformly random draw fromT where the labely of the selected(x, y) is randomly
flipped with probabilityη.

The issue of unreliable and noisy labels can be approached intwo ways: by trying to
identify and correct/eliminate suspect data points or by incorporating noise into the learning
model. Neither approach is trivial, as it is not always easy to distinguish mislabeled exam-
ples from the exceptions to general rules, atypical data points. When an instance lies far from
its class interior and in proximity of instances from different classes, it can sometimes be
mistaken for a mislabeled point [43]. Yet, atypical points sometimes hold valuable discrimi-
native information, as they might help in defining proper class boundaries for classification.
Additionally, many filtering approaches assume all of the data is available at the filtering
stage and not prohibitively large [66].

Instead of filtering or explicit noise source modeling, it isalso possible to design learn-
ing techniques that exhibit implicit robustness to high rates of label noise. In this paper,
we will demonstrate that the recently proposed hubness-aware k-nearest neighbor classifi-
cation methods [38][53][52][49] can be used for robust classification of intrinsically high-
dimensional data under the assumption of label noise. This robustness is a consequence of
the fact that, unlike in mostkNN approaches, neighbor instances do not vote by their labelat
classification time. Instead, their vote is determined by their past occurrences on the training
data.

Hubness [39] is a ubiquitous property of intrinsically high-dimensional data. With in-
creasing dimensionality, the degree distribution of thekNN graph becomes increasingly
skewed and hubs emerge as central and influential points among the data. ThekNN graph it-
self assumes a scale-free-like topology. This has multipleconsequences for similarity-based
learning methods andk-nearest neighbor methods in particular. Additionally, itchanges how
random labeling noise affects the learning process. Errorsin hub point labels can induce se-
vere mislabeling while errors in orphan points or regular points have little influence on the
classification accuracy inkNN methods.

In this paper, we introduce the concept ofhubness-proportional random label noiseas
an adversarial noise model where the most influential pointsin the data are most likely to
be corrupted. The probability of a label flip is set to be proportional to the neighbor oc-
currence frequency of the data point. Hubness-proportional random label noise models how
a potentially successful malicious attempt can compromisethe most relevant and influen-
tial neighbor points in order to disruptkNN-based retrieval, recommendation or prediction
systems.

To our knowledge, this paper is the first detailed study dedicated to examining the influ-
ence of hubness onkNN classification with uncertain data labels.

The paper is organized as follows: Section 2 summarizes the related work and the exist-
ing approaches for dealing with label noise. Consequences of hubness in intrinsically high-
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dimensional data are discussed in Section 3. Neighbor occurrence models for hubness-aware
kNN classification of high-dimensional data are described indetail in Section 4, followed
by examples that demonstrate their potential for learning under label noise. Section 5 intro-
duces the concept of hubness-proportional random label noise and gives practical examples
of the susceptibility ofkNN methods to label noise under high data hubness. The data used
in the experiments is described in Section 6, followed by experimental results and sum-
maries in Section 7. In Section 8, the main contributions of the paper are summarized and
several directions for future work are proposed.

2 Related work

Label noise often occurs in large scale problems where labelling is crowdsourced to a large
number of non-experts instead of having the domain experts carefully label each data in-
stance, for instance via Amazon’s Mechanical Turk. In such cases, it has been shown to
be beneficial to obtain multiple labels for each data point ora carefully selected subsets
of data points [24][42]. Evaluating the labeling accuracy of individual experts and non-
experts can also be used in order to improve label quality by preferring certain labelers over
others [15][60]. Modeling the concept evolution over time as the user’s perception of the
concepts that are being tagged by employing structured labeling has been shown to improve
consistency and yield considerable improvements [30]. Unreliable labels can also result
from automated information retrieval and tagging.

Data filtering for removing the mislabeled data points priorto model learning for clas-
sification is often used in practice. A simple approach is to rely on classification ensembles
and to filter out those instances that are misclassified by theensemble on the training data
by taking a majority vote [9][58][65][47]. It is possible todetect data sub-samples that lead
to high classification errors via cross-validation and to improve classification performance
by relying on multiple data representations and discriminating subspaces [57]. Examples
that lie in neighborhoods where a proportion of the dominating class is significantly lower
than average are also suspect and their elimination can helpwith improvingkNN classifica-
tion accuracy [31]. Boolean rules inferred from the measurements can be used for detecting
noisy data points [28]. Neural networks have been used for correcting the mislabeled ex-
amples in [63], by iteratively updating class affiliation probabilities based on the difference
from the trained neural network output. Unlabeled examplescan also be taken into account
in filtering in a semi-supervised type of approach, raising the overall noise detection ac-
curacy [22]. It is possible to formulate the noise removal task as an optimization problem,
which might sometimes be preferable in comparison with the ensemble based filtering ap-
proaches [56].

Mutual information is a popular feature selection criterion and a robust estimation of
mutual information via a probabilistic noise model was ableto improve feature selection
performance under label noise [17]. This was achieved by an adaptive hyper-sphere radius
selection in nearest-neighbor entropy estimators. Certain feature extraction strategies have
been successfully employed to improve classification accuracy in noisy medical data [35].

Presence of label noise in class-imbalanced learning taskscan be highly detrimental and
it was shown to affect the learning process differently depending on whether mislabeling
occurs in the minority or the majority class [23]. This is important as most noise removal
strategies treat these two cases equally.
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Non-uniform label noise sometimes arises due to systematicerrors in data acquisition
or the experimental design that produces the data in question [36][21]. The type of noise
should be determined prior to deciding on the optimal noise handling strategy.

As individual labels are unreliable, it is possible to use multi-instance learning in order
to aggregate instances and assign labels to groups of instances instead. This has been shown
to be a promising approach [25].

While boosting methods may be popular in practice [11][26][65], recent research sug-
gests that many types of boosting methods that can be interpreted as convex potential boost-
ers are highly susceptible to random classification noise [32]. Branching program based
boosters that do not fall into this framework can still achieve good learning accuracy on
noisy data.

Designing classifiers that are able to implicitly handle noisy and mislabeled data points
is another approach and one such classifier is the adaptivek-nearest neighbor classifier
(AKNN) [59] that re-scales the distances of training pointsto the query, based on their
proximity to the closest point of a different class. As labels in mislabeled points often do not
match the labels among their neighbors, this approach disregards most mislabeled points as
it adaptively increases their distance to the query. This approach will be our baseline for the
experiments in Section 7. Deep learning algorithms can be extended to handle label noise
by additional network layers for noise modeling [45]. Robust kernels can be learned from
the data in order to improve the effectiveness of kernel-based methods under label noise [7]
and robust SVM methods have also been considered [44][6].

The existing noise-handling strategies fail to take data hubness into account and do not
attribute special attention to potential errors in the hub points, which might be an issue
when learning from high-dimensional data. This problem wasidentified in [10], where it
was noted that a surprising number of classification errors in time serieskNN classification
can be attributed to hub points.

3 Hubness in Intrinsically High-dimensional Data

Hubnessis a consequence of high intrinsic data dimensionality related to the degree distri-
bution of thekNN graph [39]. Hub points arise as centers of influence, as they occur very
frequently as nearest neighbors. In fact, the entire neighbor occurrence frequency distribu-
tion becomes skewed and most points becomeanti-hubsor orphans, i.e. they occur rarely
or never as neighbors to other points. Hubs often exhibit a detrimental influence by induc-
ing many label mismatches inkNN sets and they can become semantic singularities in the
data. Thesebad hubscan arise for many reasons and they are not necessarily erroneous data
points. However, there is an increased chance for their emergence in presence of label noise.

Hubness has first been reported in music retrieval systems [4][3], where it is still an
important and largely unresolved issue [16], despite some recent advances [41][19]. Hub
songs were occurring exceedingly often in top-k result sets, even in cases when there was
no apparent semantic connection to the queries.

Let T = {(x1, y1), (x1, y1) . . . (xN , yN )} be a training set of labeled data points drawn
i.i.d. from a joint distributionp(x, y) = p(x) · p(y|x) overX × Y , whereX is the feature
space andY the finite label space,|Y | = C.

Denote byDk(xi) = {(xi1, yi1), (xi2, yi2) . . . (xik, yik)} the k-neighborhood ofxi.
Any x ∈ Dk(xi) is a neighbor ofxi andxi is a reverse neighbor of anyx ∈ Dk(xi).
An occurrence of an element in someDk(xi) is referred to ask-occurrence. The number
of k-occurrences of a pointx is denoted byNk(x) and will sometimes be referred to as
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the hubnessof x1. A k-occurrence is consideredgood if the neighbor label matches the
label in the point of interest, i.e.xij ∈ Dk(xi) is a good occurrence ofxij if yij = yi.
Similarly, label mismatches definebad occurrencesof neighbor points. Total occurrence
counts consist of a sum of good and bad occurrences, asNk(xi) = GNk(xi) + BNk(xi),
whereGNk andBNk represent good and bad hubness, respectively. It is possible to consider
class-conditional occurrence sums as well and we will denote byNk,c(xi) the number of
k-occurrences ofxi in neighborhoods of examples that belong to classc.

In high dimensional data, the distribution ofNk(x) becomes highly asymmetric, in a
sense that it is skewed to the right.Skewness2 of the neighbork-occurrence frequency dis-
tribution is defined as follows:

SNk(x) =
m3(Nk(x))

m
3/2
2 (Nk(x))

=
1/N

∑N
i=1(Nk(xi)− k)3

(1/N
∑N

i=1(Nk(xi)− k)2)3/2
(1)

High positive skewness of the neighbork-occurrence frequency in intrinsically high-
dimensional data indicates that the distribution tail is longer on the right, as illustrated in
Figure 1. In many dimensions, thek-occurrence frequency distribution approaches a power
law.

Fig. 1 The change in the distribution shape of 10-occurrences (N10) in i.i.d. Gaussian data with increasing
dimensionality when using the Euclidean distance. The graph was obtained by averaging over 50 randomly
generated data sets. Hub-points exist also withN10 > 60, so the graph displays only a restriction of the
actual data occurrence distribution.

Formally, we will say thathubsare pointsxh ∈ D such thatNk(xh) > k + 2 · σNk(x).
In other words, their occurrence frequency exceeds the mean(k) by more than twice the
standard deviation. We will denote the set of all hubs inT by HT

k .
Most data in practical applications is intrinsically high-dimensional andk-nearest neigh-

bor hubs have been shown to arise in text, audio, images [48],collaborative filtering data [34]
and time series [37].

1 The wordhubnessis otherwise used to denote the neighbor occurrence distribution skewness when used
in context of a data set or subset. When used in context of a single pointx, it denotes the degree to which that
point is a hub, which is measured by the point occurrence count, Nk(x).

2 Skewness of a probability distribution is its 3rd standardized moment and is frequently used in statistical
analysis.
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4 Neighbor Occurrence Models

Section 4.1 describes the basic ideas behind the neighbor occurrence models in hubness-
aware classifiers and Section 4.2 gives examples of how the use of neighbor occurrence
models might improve classification performance under label noise.

4.1 Learning from Past Occurrences

In order to alleviate the negative influence of bad hubs in thedata and allow for robust
k-nearest neighbor classification under the assumption of hubness, several hubness-aware
kNN methods have recently been proposed: hubness-weightedkNN (hw-kNN) [38], hubness-
fuzzykNN (h-FNN) [53], hubness-informationkNN (HIKNN) [49], Naive Hubness-Bayesian
kNN (NHBNN) [52] and Augmented Naive Hubness-BayesiankNN (ANHBNN) [51]. All
hubness-aware approaches are based on learning from past occurrences by means of build-
ing a neighbor occurrence model from the observations on thetraining data. These class-
conditional neighbor occurrence probabilities are used topredict consequences of certain
neighbor occurrences in future tests and to infer the class affiliation probabilities of future
query points.

The weighting approach in hw-kNN is simple, yet quite effective in many cases. It is
based on diminishing the effect of bad hubs on classification. Standardized bad hubness

defined byhB(xi) =
BNk(xi)−µBNk

σBNk

is used to determine vote weights, whereµBNk
and

σBNk
denote mean bad hubness and its standard deviation. Eachxi is then assigned a voting

weight ofwi = e−hB(xi). While this weighting reduces the contribution of bad hubs to the
vote, there is still some unexploited information in the past neighbor occurrences that can
be used for better class prediction.

Class-conditional occurrence profiles can be used to determine soft votes in a fuzzy
k-nearest neighbor framework and this was a basis for hubness-fuzzy kNN (h-FNN).

uc(x) =

∑k
i=1 uci(‖x− xi‖

−(2/(m−1)))
∑k

i=1 (‖x− xi‖−(2/(m−1)))
, (2)

Let x be a newly observed data instance for which we wish to performclassification.
The degree of membership ofx in each classc is then defined as in Equation 2.

uci =







pk(y = c|xi) ≈
Nk,c(xi)+λ
Nk(xi)+ncλ

, if Nk(xi) > θ,
λ+

∑
(x,y)∈(X,Y )|y=yi

Nk,c(x)

ncλ+
∑

(x,y)∈(X,Y )|y=yi
Nk(x)

, if Nk(xi) ≤ θ.
(3)

Theθ parameter in Equation 3 represents the anti-hub cut-off point and can even be set
to 0 by default. Distance weighting is optional and a defaultparameter value ofm = 2 has
been previously shown to perform well and is used in our experiments. The parameter value
can be further optimized via cross-validation. This simpleapproach performs surprisingly
well in many cases and will be the focus of our experimental comparisons in Section 7.

Fuzzy votes of neighbor points in h-FNN are derived from their pastk-occurrence pro-
files. Their own labels are not directly taken into account. The fuzzy vote derived from the
reverse-nearest neighbor set is in fact an estimate of the true class density distribution in the
neighbor point. Since most neighbors are hubs and hubs occuron average in manyk-nearest
neighbor sets, these estimates can be quite robust to randomlabel flips and noise. h-FNN has
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been shown to perform substantially better than basic fuzzyk-nearest neighbor method [27]
on high-dimensional data.

An extension of h-FNN in the form of HIKNN was later proposed,by including the orig-
inal label information and giving preference to rarely occurring neighbor points. Neighbor
occurrence self-information is defined asIxit = log 1

p(xit∈Dk(x))
, wherep(xit ∈ Dk(x)) ≈

Nk(xit)
N is the probability of the point occurring as a neighbor. Relative and absolute surprise

factorsα(xit) =
Ixit

−minxj∈D Ixj

logn−minxj∈D Ixj
andβ(xit) =

Ixit

logN can be derived from the neighbor

occurrence self-information and are used for weighting neighbor votes and weighting the
contributions of the label information and occurrence profile information in the final fuzzy
votes. The distance weighting factordw(xit) is optional and we have used the same weight-
ing scheme as in h-FNN in our experiments.

p̄k(yi = c|xit ∈ Dk(xi)) =
Nk,c(xit)

Nk(xit)
= p̄k,c(xit)

pk(yi = c|xit) ≈

{

α(xit) + (1− α(xit)) · p̄k,c(xit), yit = c

(1− α(xit)) · p̄k,c(xit), yit 6= c
(4)

uc(xi) ∝
k
∑

t=1

β(xit) · dw(xit) · pk(yi = c|xit) (5)

Equations 4 and 5 represent the HIKNN voting framework, based on previously defined
quantities. This form of assigning voting weights incorporates a bias towards more ’local’
neighbor points, since hubs tend to be located closer to cluster centers in high-dimensional
data. However, the increased specificity bias of the HIKNN learning approach makes it
somewhat more prone to noise and mislabeling.

Naive Hubness-Bayesiank-nearest neighbor (NHBNN) [52] represents another approach
to learning from past occurrences, which is based on a Naive Bayesian estimate of the
class affiliation probabilities. Denote the data size byN = |T | and the size of classc by
nc = |{xi : yi = c}|. The NHBNN rule is then given as follows, with aλ smoothing
parameter.

p(yi = c|Dk(xi)) ∝ p(yi = c)
k
∏

t=1

p(xit ∈ Dk(x)|y = c) =
nc

N

k
∏

t=1

Nk,c(xit) + 1 + λ

nc · (k+ 1) + λN

(6)
Naive Bayes rule is based on an independence assumption between the attributes and

this assumption is severely compromised in NHBNN. Nevertheless, Naive Bayes is known
to often be able to deliver good results in presence of strongfunctional correlations between
the attributes [40] and NHBNN has been shown to perform well in class imbalanced classi-
fication tasks on high-dimensional data [50].

An important property of all hubness-awarekNN classification methods is that it is pos-
sible to use them in boosting. Neighbor occurrence models can be trained with instance
weights. This is why in Section 7 we have avoided consideringboosting approaches as
competitive baselines, as hubness-aware classification methods can actually be used in con-
junction with those noise-tolerant boosting strategies. Adetailed examination of this idea is
beyond the scope of this paper and will be addressed in futurework.



8 Nenad Tomašev, Krisztian Buza

4.2 Handling of Mislabeled Points in Hubness-aware Classification

Mostk-nearest neighbor methods have a high sensitivity bias as they retain all the examples
and do not generalize by building explicit models. Learningfrom past occurrences in form
of building neighbor occurrence models increases the generalization capabilities ofkNN
classification, especially in case of h-FNN and NHBNN.

Consider a simple 2-dimensional example shown in Figure 2. If a point is mislabeled,
h-FNN can learn that its past occurrences are inconsistent with its label and would prefer
the occurrence information to the label information when making a classification decision.
While this approach seems conceptually well suited for handling mislabeled data points, it
is not only the mislabeled points that become bad hubs and exhibit a detrimental influence
on kNN classification. Bad hubs are not uncommon in intrinsically high-dimensional data
and this is why it might be a good idea to take the past occurrence information into account.
Past occurrence evidence is derived from the label distribution of a potentially large number
of reverse nearest neighbors in case of strong hub points, soit is also more robust to label
noise.

Xq
Xm

X1

X2

Class: 0

Class: 1
A is nearest

neighbor of B
A B :

Fig. 2 An illustrative example of 1-NN classification in presence of incorrect data labels. ConsiderXq as
the query point. Its nearest neighborXm = NN(Xq) seems to be mislabeled. The 1-NN rule would assign
Xq to class 1 instead of class 0, due to the label of its nearest neighbor. This error might further propagate
if Xq is retrieved in future classification queries. In this particular case, it is possible to sidestep the issue
by using a larger neighborhood, though this is not always feasible in more complex data. However, we will
demonstrate that it is possible to reach the correct classification decision even fork = 1, by applying hubness-
aware classification. Namely,Xm = NN(X1) andXm = NN(X2) andY1 = Y2 = 0. Counting the
occurrences givesN1(Xm) = 2, N1,0(Xm) = 2 andN1,1(Xm) = 0. Consider the hubness-fuzzy
k-nearest neighbor method, without the optional distance weighting. This givesu0(Xm) = 2+λ

2+2·λ
and

u1(Xm) = λ
2+2·λ

. Assumeλ = 1 here, for simplicity. This yieldsu0(Xm) = 0.75 andu1(Xm) = 0.25.
As Xm is the only point to vote sincek = 1, these are also the final h-FNN class affiliation probability
estimates forXq . Therefore,p(Yq = 0) = 0.75 and p(Yq = 1) = 0.25. These estimates lead to a
correctXq classification, despite its mislabeled nearest neighbor. Similar derivations hold for NHBNN or
HIKNN. This example illustrates the motivation behind learning from past occurrences and hubness-aware
classification. Due to the fact that hubs often turn out to be detrimental to classification [37] and that bad
hubness is not uncommon in intrinsically high-dimensionaldata, it is not uncommon for a point to have
bad hubs among itsk-nearest neighbors. However, it is not always that easy to extract useful information
from past hub occurrences, especially in highly non-homogenous high-entropy occurrence profiles, where
the occurrence profile itself cannot clearly indicate how the vote should be placed. Different strategies for
combining all this information for inferring the class affiliation in the point of interest yield different hubness-
aware approaches.
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As most neighbork-occurrences in high-dimensional data are in fact hub occurrences,
flipping a single label is much less likely to cause misclassification in hubness-aware classi-
fiers. In fact, randomly flipping a label of a hub point might induce severe misclassification
in the basickNN method and many standardkNN methods. However, a noisy hub label does
not exhibit a greater influence on hubness-aware classification with h-FNN or NHBNN than
any other noisy label. This is due to the fact that the labels are not used directly in voting for
classification.

Formally, assume we are observing a point(xm, ym) whose label has been randomly
flipped. InkNN, this noisy information propagates toNk(xm) k-nearest neighbor sets, all
kNN sets wherexm occurs as a neighbor. In h-FNN, the only influence thatym has on future
classification is via the occurrence models of the neighborsof xm, pointsxi ∈ Dk(xm). In
many intrinsically high-dimensional data sets, a large proportion of points are orphans that
never occur as neighbors. Due to that fact, the expectation of Nk(x) for those points that do
occur in neighbor sets increases andE(Nk(xm)|∃x : xm ∈ Dk(x)) > k = |Dk(xm)| if
orphans are present in the data. It follows that non-orphan mislabeled points are expected
to propagate the noisy information in more cases inkNN than h-FNN, assuming high data
dimensionality. However, orphans play no role inkNN, but they are being taken into account
when building the neighbor occurrence models in h-FNN and orphan points can also have
noisy labels. The expected number of cases where a randomly mislabeled point would ex-
hibit its influence is therefore the same, if we take both orphans and the occurring neighbor
points into account.

However, while the expected number of error propagation cases might be the same, the
expected effect is not. Class probability density estimation quality depends on the num-
ber of sample neighbor or reverse neighbor points. In general, the standard errorof a

probability estimatep is
√

p(1−p)
n , wheren is the number of observations it is derived

from. A single noisy labeled data point or a constant number of noisy labeled data points
would have a more pronounced effect on those estimates that are derived from a smaller
number of sample points, trivially. InkNN, the class probability estimates are derived
from exactlyk neighbors. In neighbor occurrence models, it was already mentioned that
E(Nk(x)|∃xi : x ∈ Dk(xi)) > k in high-dimensional data in presence of orphan points.
Therefore, a single mislabeling has a higher expected effect on kNN voting than on one
fuzzy h-FNN vote. As h-FNN estimates the class affiliation probabilities fromk such fuzzy
votes, a much larger number of points is used in deriving the final estimate.

5 Hubness-proportional random label noise

In adversarial classification tasks like intrusion detection or spam filtering, malicious adver-
saries may manipulate data labels in order to affect the classification outcome. As hubs are
the centers of influence inkNN classification, we postulate that most damage could poten-
tially be done tokNN-based learning systems by targeting hub points specifically with label
noise.

Uniform random label noise is, therefore, insufficient to properly estimate the pes-
simistic scenarios of potentially successful malicious hub label flips that might be targeted
in kNN-based systems. It is also insufficient for estimating theworst-case robustness of
such systems and can be used primarily for evaluating the average system behaviour in pres-
ence of label noise. In order to be able to better test the sensitivity of kNN-based systems
to adversarial hub-targeted attacks or non-adversarial systematic hub-centered errors, it is
preferable to use a non-uniform hub-preferential noise model.
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Def. Let hubness-proportional random label noise3 with the noise rateη be the ran-
dom label noise that results from the following stochastic process:

Step 1: Randomly select a setS of distinct data points fromT of size|S| = η ·N , according
to the discrete probability distribution that defines the inclusion probability ofxi ∈ T to
S in a single draw aspselect(xi) =

Nk(xi)
k·N .

Step 2: Randomly flip the label of eachxi ∈ S, so thatpflip(yi → c) = 1
C−1 for c 6= yi.

Since orphan points haveNk(xi) = 0, some smoothing might be necessary in practice
in order to ensure positive selection/flip probabilities for all data points. If thek-neighbor set
of each point is extended to include the point itself, then the issue is avoided andpselect(xi) =
Nk(xi)+1
(k+1)·N .

Enforcing the mislabeling rate by fixing the number of induced mislabeled points is
required since it is impossible to simply definepflip(yi) = η · Nk(xi)

k for independent label

flips, due to the fact that it is possible to haveNk(xi)
k > 1

η , which would then result in
pflip(yi) > 1.

Hypothesis: In intrinsically high-dimensional data, hubness-proportional random label
noise affectskNN classification more severely than uniform random label noise and rep-
resents a challenging noise model that can be used to evaluate the limit-case robustness of
kNN methods.

Nevertheless, it should be noted that the hubness-proportional random label noise is not
the worst case scenario in itself. The worst case would be to consider having all of the top
η · N most frequent neighbor points mislabeled, since this wouldmaximize the number of
compromisedk-neighbor occurrences. Since such a worst case scenario is unlikely in the
non-adversarial case and also difficult to achieve in the adversarial case unless complete
information about all the data and all the system componentsis available, we prefer to rely
on the proposed stochastic hubness-proportional random label noise model for evaluating
thekNN-based system robustness instead.

It is possible to extend the proposed stochastic model by conditioning the label flips on
the values of the original labels and considering the principal class-conditional gradients
of misclassification in the data. The misclassification gradients can be deduced from the
classification confusion matrices. The adversary could then flip the label of the target in-
stance to the value that is most likely to cause misclassification in the class that is estimated
as most common in the target instance’s occurrence profile. While such advanced strate-
gies are conceivable, they would require the class-conditional occurrence estimates that are
non-trivial to obtain, so the following evaluation focuseson the simpler yet challenging
hubness-proportional random label noise model instead.

In Section 5.2 we will discuss possible adversarial approaches for inducing hubness-
correlated label noise in real-world data and show that the hubness-proportional random
label noise model can be helpful in evaluating the robustness of the systems to such attacks.

The impact of hub-centered label flips on machine learning performance can be quite
substantial, depending on the underlying data dimensionality and hubness. Section 5.1 gives
a practical example of how things can go wrong even if no more than a few labels of the
highly influential examples get compromised.

3 Hubness-proportional label noise will also be referred to asNk(x)-proportional label noise interchange-
ably throughout the paper.
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5.1 Susceptibility ofkNN to Hub-centered Noise: An Illustrative Example

In many types of networks, the presence of hubs can increase robustness to random noise [64].
However, this comes at a price. At the same time, the presenceof hubs makes scale-free net-
works significantly more vulnerable to hub-centered inaccuracies. Small changes and low
noise levels can sometimes substantially harm system performance. The example outlined
in Figure 3 illustrates this problem [48].

Fig. 3 The emergence of top 5 major hubs on the iNet3Err dataset [48]. Good and bad 5-occurrence fre-
quencies are denoted byGN5 andBN5, respectively. Under the particular choice of feature representation
(SIFT [33] bag of visual words) and metric (Manhattan), noisy feature vectors that resulted as errors in the
feature extraction pipeline ended up becoming the major hubs in the data, as the size of the visual word vo-
cabulary was increased. Their influence was highly detrimental, as most of their occurrences induced label
mismatches.

Figure 3 shows the emergence of 5 major hubs on the iNet3Err quantized SIFT [33] rep-
resentation and their detrimental influence. The data corresponds to a 3-class subset from the
public ImageNet repository [14] (http://www.image-net.org/). The experiments were
run to determine the optimal bag of visual words vocabulary size [48] and an increase in
dimensionality resulted in a sudden and severe drop in object recognition performance. As
a result, the basic5-NN classifier performed worse than zero-rule for the 1000-dimensional
case, as shown in Table 1. Subsequent analysis has determined the cause of this pathological
behavior to lie in the emergence of several extremely bad pervasive hub images.

Table 1 Classification accuracy ofkNN and four hubness-awarekNN algorithms (hw-kNN, NHBNN, h-
FNN, HIKNN) on iNer3Err image data. Statistically significant improvements are denoted by◦.

Data set 5-NN hw-kNN NHBNN h-FNN HIKNN

ImNet3Err 21.2± 2.1 27.1± 11.3 59.5± 3.2 ◦ 59.5 ± 3.2 ◦ 59.6 ± 3.2 ◦

In this particular case, the image hubs were erroneously represented by zero-vectors as
a result of an I/O error in the feature extraction pipeline. The Manhattan distance from a
zero vector to any given quantized image representation remains constant, regardless of the
codebook size. The number of local image features that are being quantized is constant,
so theL1 norm of the quantized vector does not change. At the same time, the distances
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between pairs of images increase on average with increasingdimensionality, as the weights
are spread over a larger number of buckets. This causes the zero vectors to become major
hubs in the data.

The particular error was easily corrected by re-running thefeature extraction compo-
nent for the images in question and updating the extraction code. It can also be argued that
carefully designed data processing systems ought to perform run-time consistency checks to
ensure valid data representation. However, this example clearly shows the potential danger
that lies hidden in the hubness of the data. Only 5 detrimental hub images had rendered the
kNN-based object recognition component effectively useless on a 2731 image dataset.

Even properly processed data sources might contain non-negligible amounts of external
systematic and non-uniform label noise [36][21]. If such noise were to align itself in the
data space with the central cluster regions that exhibit thehighest overall hubness in the
data [54], hub-centered noise could still arise.

Highly detrimental hub points can also naturally arise in the centers of borderline regions
between different classes and need not be noisy instances. Ensuring a valid and correct
data representation is not enough to prevent such pathological cases from ever occurring in
practice. Additional data filters and instance selection components might be necessary for
robust data pre-processing. Robust systems need to be able to handle not only the average
levels of noise and data corruption but also the more extremecases of hub-centered noise.

5.2 Simulating the Adversarial Hub-targeted Label Flips

Hub-centered label noise has a high pay-off in adversarial scenarios, where malicious intru-
sions might be difficult or costly and the adversaries might look for ways of maximizing the
disruption to the target systems with minimal intervention. If the adversaries were to be able
to predict the relevance of the known examples on unseen data, they would be able to target
hub points specifically.

If given access to a sample of the data drawn from the same or similar distribution
as the unseen data, it would be possible to evaluate the future occurrence frequencies of
potential target examples, especially as estimating the exact frequencies is less important
than estimating whether a given point is a potential hub target or not. As hubs occur very
frequently ink-nearest neighbor sets, even a small sample would suffice fordetecting most
hub targets in a very straightforward way, assuming some knowledge of the underlying
metrics and data representations.

If the exact data representation or the distance measure areunknown, it is still possible
to trivially determine target hubs if given access to the system itself, by running a series of
queries on the system and keeping track of the returned itemsin the top-k result sets and
their properties.

Even if the exact similarity measure is unknown and constantly querying the system is
not feasible, there are some known properties of hubness that can be exploited for approxi-
mately detecting high-hubness targets. For instance, it isa known property of hubs that they
tend to lie close to local cluster centers [54]. Clustering can, therefore, also be used for esti-
mating point centrality and the centrality can be used for estimating point hubness, the same
way that point hubness can be used for effective clustering of high-dimensional data.

In certain cases, indirect hubness-correlated attacks arepossible based on some known
properties of certain data types and metrics. Document relevance is preserved across lan-
guages, so it possible to approximate document hubness if given access to data transla-
tions [55]. In textual data in particular, document length can sometimes be correlated with
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hubness and shorter (or longer) documents might have a tendency for becoming hubs, under
different circumstances [37].

We will illustrate this point by simulating an adversarial attack on the labels of the
SMS message spam data [12,13,1] from the UCI repository (https://archive.ics.uci.

edu/ml/datasets/SMS+Spam+Collection). A 4-gram representation was extracted and the
cosine similarity was used after applying TF-IDF, which is standard in many text processing
applications. N-grams were preferable to simple bag of words here, due to a high frequency
of misspelled words and alternate spellings. The data contains 5574 messages including
4827 regular and 747 spam messages. This collection of shortmessages exhibits substantial
hubness, which can be seen in Figure 4.
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Fig. 4 Skewness and bad hubness in the SMS spam dataset, over a rangeof neighborhood sizes. The data
was represented via 4-grams and the similarity was calculated as cosine similarity after applying TF-IDF. In
all cases, the data exhibits substantial hubness. The classification task is not too difficult in absence of noise,
given the low rate of label mismatches inkNN sets.

Let xi = {fji , j ∈ {1 . . . vsize}} be the feature representation of messagexi. The fji
corresponds to the occurrence frequency of thej-th n-gram in the message. As the SMS
messages are short, mostfji equal zero and the representation is sparse. The TF-IDF weight
for thej-th n-gram in messagexi is defined aswj

tfidf(xi) = fji · log N

|xp:f
j
p>0|

. We will also

assign a weight to the entire message by summing all the individual TF-IDF weights for the
terms that occur in that message, as follows:Wtfidf(xi) =

∑

j:fj
i >0

wj
tfidf(xi).

In the SMS spam message dataset, hub messages seem to have thelowest average total
weight, as shown in Figure 5.

We have simulated an adversarial label noise attack that exploits this fact. Instead of cal-
culating or estimating target message hubness, the attack is based on targeting the messages
of lowest weight. We have examined both the stochastic and the deterministic scenario. In
the deterministic scenario, the adversary is able to flip thelabels ofη ·N messages of lowest
weight in the collection. In the more realistic, probabilistic case, the adversary is able to
compromise the label ofxi with a probabilitypflip(yi) that is proportional to the inverse of
the total message TF-IDF weight:pflip(yi) ∝ 1

Wtfidf(xi)
. In the absence of the exact TF-IDF

weights, the weights can be approximated from a sample or from other textual sources.
The experiments were run as repeated random subsampling. Ineach iteration, the data

was randomly split so that70% was taken as training and30% as test data. Different noise
models were applied to the training data in separate experiments. Test data was used to query
the training data and thek most similar messages were selected for each test data point. The
average bad hubness rate was calculate in each case. The summary of the experiments is
given in Figure 6, for different noise rates.
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Fig. 5 The average message weight as a sum of the TFIDF weights of allits n-grams for hubs, regular
messages and anti-hubs, over a range of neighborhood sizes.Hub messages have the lowest average length
for small neighborhood sizes.

8.654506 7.598263 6.850371 6.48173 6.255101 6.035821

0.042698 0.052745 0.059622 0.064272 0.068281 0.071851

4.269824 5.274489 5.962205 6.427162 6.828131 7.185146

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

S
N
k

k
0

10

20

30

40

50

60

70

 = 0.05  = 0.10  = 0.15  = 0.20

B
N

k
 %

random

~ Nk(x)

~ 1/Wtfidf

min 1/Wtfidf

Fig. 6 The induced bad hubness percentages in the SMS spam dataset under different noise models and
different noise rates. The random inverse TF-IDF weight noise model induces almost as much bad hubness
in the data as the hubness-proportional random label noise.The deterministic case where theη · N shortest
messages are selected and mislabeled induces a much higher bad hubness rate then any other examined noise
model, as many hub messages get mislabeled.

The experiments have shown that the inverse message weight noise model produces a
very similar bad hubness rate to the hubness-proportional random label noise. The deter-
ministic alternative, where a number of messages of lowest weight is selected, produces an
even more severe bad hubness in the data and causes significant misclassification.

These experiments clearly demonstrate that it is possible to exploit some known proper-
ties of hubs in standard feature representations to approximate random hubness-proportional
label noise. Strictly speaking, the outcome is not an indirect hubness-proportional noise
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model, as much as hub-targeted and hubness-correlated noise model. The distinction, though,
is not that important from the practical viewpoint. Since itmight be possible to carry out
malicious attacks targeting hub examples in particular, hubness-proportional random label
noise can be used to model the consequences of a successful attack and to evaluate the
robustness of the system.

6 Data

The experiments were performed on several data domains. Thebenchmark consists of quan-
tized image representations, high-dimensional Gaussian mixtures, UCI datasets4, as well as
UCR time series datasets5. Images and Gaussian data exhibited substantial hubness, while
the selected UCI and UCR datasets exhibited low-to-medium hubness on average.

Image data used in the experiments consists of several high-hubness subsets of the Ima-
geNet repository6 that were previously used in hubness studies [53][48]. We have examined
quantized 400-dimensional SIFT feature and 100-dimensional Haar wavelet representations.

The Gaussian mixture data was also used in previous experiments [50]. It was generated
with a specific intent to pose difficulties fork-nearest neighbor classification. Letµc and
σc be thed-dimensional mean and standard deviation vectors of a hyper-spherical Gaussian
classc ∈ 1..C on a synthetic Gaussian mixture data set. The covariance matrices of the
generated classes were set to be diagonal for simplicity, i.e. the attributes were independent
and thei-th entry inσc signifies the independent dispersion of that synthetic feature. For
the initial class, the mean vector was set to zeroes and the standard deviation vector was
generated randomly. Each subsequent classc was then randomly ’paired’ with one prior
Gaussian class, denoted byc̄, so that some overlap between the two was assured. For each
dimensioni ∈ 1..d independently,µc was then set toµc ≈ µc̄±β ·σc̄ with equal probability,
whereβ = 0.75. Dispersion was updated by the following rule:σc = γ ·σc̄+(γ−β) ·Z ·σc̄,
whereγ = 1.5 andZ is a uniform random variable defined on[0,1]. The assigned class
sizes were randomly taken from a range between 20 and 1000. The 10 generated synthetic
datasets were set to be 100-dimensional and to contain 20 different classes.

A set of 15 representative UCI datasets was selected for experiments, as follows: Ar-
rhythmia, Ozone, Ecoli, Gisette, Glass, Haberman, Ionosphere, Mfeat-factors, Mfeat-fourier,
Mfeat-karhunen, Iris, Segment, Sonar, Vehicle and Ovarian. While some of this data is high-
dimensional, the selected datasets do not exhibit severe hubness, unlike the selected image
data.

Similarly, we have selected a set of 15 representative UCR time series datasets, as fol-
lows: CricketX [29], CricketY, CricketZ, FacesUCR, MedicalImages, MALLAT, Motes,
OliveOil, SonyAIBORobotSurface, SonyAIBORobotSurfaceII, SwedishLeaf, Symbols, Syn-
theticControl, Trace, TwoPatterns.kNN classification is often used in the time series do-
main, especially when used in conjunction with the dynamic time warping distance [62][61].
This approach is among the most popular ones and competitivewith the state-of-the-art.
Therefore, it is important to evaluate the robustness ofkNN methods to label noise on time
series data.

4 https://archive.ics.uci.edu/ml/datasets.html
5 www.cs.ucr.edu/ eamonn/timeseriesdata/
6 http://www.image-net.org/
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7 Experiments

All experiments were run as 10-times 10-fold cross-validation. Corrected re-sampled t-test
was used for statistical significance comparisons [8].

Most experiments were performed in 3 main experimental setups: learning and classifi-
cation with correct data labels; learning and classification under uniform random label noise
rateη = 0.3 and learning and classification under hubness-proportional random label noise
rateη = 0.3. The influence of varying the noise levels is discussed in theexperiments in
Section 7.2.

We have compared the performance ofkNN, neighbor-weightedkNN (NWKNN) [46]
and adaptivekNN (AKNN) [59] with the performance of hubness-aware classification meth-
ods, in particular hw-kNN, HIKNN, NHBNN and h-FNN. The neighbor-weightedkNN is
an extension of the basickNN method that incorporates class-conditional vote weighting
for class-imbalanced data. The third baseline, AKNN, is themost competitive baseline ap-
proach, due to its noise-robust distance re-scaling strategy, as explained in Section 2.

Manhattan distance was used for comparing image representations, Euclidean on UCI
data and Gaussian mixtures and dynamic time warping (DTW) ontime series. Neighborhood
size ofk = 5 was used in most experiments, while Section 7.3 discusses the influence of
varying neighborhood size.

The summary of the experiments on ImageNet datasets is givenin Table 2, the summary
of experiments on high-dimensional Gaussian mixtures in Table 3, the summary of exper-
iments on UCI datasets in Table 4 and the summary of experiments on time series UCR
data in Table 5. The experiments demonstrate a substantial difference in robustness between
kNN and the tested hubness-aware approaches. For example, the average accuracy ofkNN
on ImageNet data drops from79.8% to 70.5% and43.8% when the correct labels are in-
fluenced withη = 0.3 random label noise andη = 0.3 hubness proportional random label
noise, respectively. In the same circumstances, the average classification accuracy of h-FNN
changes from81.4% to 79.6% and then to79.2%. The absolute accuracy drop of36% in
kNN corresponds to a drop of mere2.2% in h-FNN.

Among the hubness-aware classification methods, h-FNN achieves the best results over-
all for theη = 0.3 random label noise level andk = 5, uniform or hubness-proportional. It is
followed by NHBNN, AKNN and HIKNN, depending on the data domain and the setup. The
worst among the tested hubness-aware approaches was the hubness-weightedkNN, which
is not surprising, as it performs voting by label, unlike theother compared hubness-aware
methods that base their votes on the neighbor occurrence models.

Uniform label noise affects the perceived class distribution in the data and it shifts it
towards the uniform class distribution. This difference between the perceived class distri-
bution on the training data and the actual class distribution on the test data implies that the
class-conditional vote weighting in NWKNN will be negatively affected by the label noise.
This is why the experiments indicate that NWKNN actually performs worse than the basic
kNN in presence of label noise. AKNN performs best among the baselines.

The improvements offered by h-FNN overkNN are more pronounced in high-hubness
data than in the examined low-to-medium hubness data. Nevertheless, h-FNN seems to
achieve promising results in those cases as well.

The improvement rate may vary when using different neighborhood sizes, as discussed
in Section 7.3.
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7.1 Robustness to Hubness-proportional Label Noise

Hubness-proportional random label noise increases label mismatch percentages ink-nearest
neighbor sets more than the uniform random label noise, as shown in Figure 7. The differ-
ence is more pronounced in high-hubness data, which also explains why there is a bigger
difference between the performance ofkNN and the performance of hubness-aware methods
in those cases.
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Fig. 7 The percentage of label mismatches in 5-NN sets as label noise is introduced in the data. The non-
noisy case is denoted byη = 0, the uniform random label noise case with the30% noise level byη = 0.3 and
theNk(x)-proportional random label noise case with the same noise level asη = 0.3(˜Nk(x)). TheNk(x)-
proportional random label noise increases bad neighbor occurrence percentages more than the uniform label
noise. The change is more pronounced in high-hubness data than in low-to-medium hubness data.

The average accuracy ofkNN, AKNN, HIKNN, NHBNN and h-FNN for each data
domain and each experimental setup separately is shown in Figure 8. AKNN exhibits a
somewhat lower robustness than h-FNN and NHBNN to uniform random noise, though it
is still comparable. However, under hubness-proportionalrandom label noise the difference
becomes apparent.

These results indicate that our initial hypothesis was correct and that hubness-proportional
random label noise poses significant challenges forkNN classification. Furthermore, by us-
ing the neighbor occurrence models for hubness-awarekNN classification and the hubness-
based fuzzyk-nearest neighbor approach in particular, it is possible toperform well even
under high noise rates. The overall classification performance could be further improved by
performing data filtering prior to classification, though this is a separate topic and beyond
the scope of this study.

7.2 Influence of Varying Noise Levels

As most experiments were performed for the noise rateη = 0.3, a series of comparisons
was run on multiple datasets for multiple increasing noise levels. A comparison ofkNN,
AKNN, HIKNN and h-FNN in terms of classification accuracy under uniform random label
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Fig. 8 Average classification accuracy ofkNN, AKNN, HIKNN, NHBNN and h-FNN on different data
domains. Comparisons are given for correct labels,η = 0.3 random label noise level, as well asNk(x)-
proportionalη = 0.3 label noise. h-FNN exhibits the overall best robustness to label noise among the com-
pared approaches. As for the baselinekNN, a steep decline in accuracy can be observed, especially in case of
adversarialNk(x)-proportional label noise, where it performs much worse than when noise is randomly dis-
tributed throughout the label space. No significant difference in performance of h-FNN can be seen between
the two compared types of noise.

noise is shown in Figure 9, for iNet3ImbSift-iNet6ImbSift image datasets. The accuracy of
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h-FNN appears to have the slowest deterioration rate with respect to label noise and the
biggest improvements can be seen for the highest noise rates.
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Fig. 9 Classification accuracy ofkNN, AKNN, HIKNN and h-FNN over a range of increasing noise rates of
uniform random label noise. In each case, the accuracy of h-FNN exhibits the slowest decline and it proves
to be robust to high noise levels.

Similarly, a comparison between the accuracy ofkNN, AKNN, HIKNN and h-FNN
under increasing hubness-proportional random label noiseis shown in Figure 10. h-FNN
achieves a high robustness in this case and is apparently notnoticeably affected by the
change in the label noise distribution, unlike the other methods that show a steeper perfor-
mance decline.
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Fig. 10 Classification accuracy ofkNN, AKNN, HIKNN and h-FNN over a range of increasingNk(x)-
proportional noise rates. In each case, the accuracy of h-FNN seems to be least affected by the introduction
of label noise.
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These experiments show that the improvements that have beenobserved are consistent
over various noise rates and noise models. Hubness-based fuzzy k-nearest neighbor clas-
sification achieves the best results among the compared approaches regardless of the noise
rate or the noise distribution, though the improvements aremost significant for higher noise
levels, which is a beneficial property.

7.3 Influence of Varying Neighborhood Size

Choosing an optimal neighborhood size is a non-trivial problem in mostkNN methods. A
value ofk = 5 was used in most experiments presented here, which is a common default
choice. Larger values ofk might sometimes be preferable in presence of noise. In orderto
evaluate the influence of neighborhood size on classification results, we have compared the
classification accuracy ofkNN, AKNN, HIKNN and h-FNN for a fixed random label noise
rate ofη = 0.3 over a range of increasing neighborhood sizes, as shown in Figure 11.
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Fig. 11 Classification accuracy ofkNN, AKNN, HIKNN and h-FNN for a uniform random label noise rate of
η = 0.3 over a range of increasing neighborhood sizes. Using largerneighborhoods increases the robustness
of the compared classification methods to mislabeling. The best overall results are achieved by h-FNN and
HIKNN.

According to Figure 11, an increase in neighborhood size improveskNN classification
performance on these particular datasets, as it reduces theinfluence of noise. Not all remain-
ing algorithms improve with increasing neighborhood size,as h-FNN and AKNN reach a
plateau somewhere betweenk = 5 andk = 10. HIKNN continues to improve and outper-
forms h-FNN for large neighborhood sizes, while h-FNN remains dominant when smaller
neighborhoods are used.
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While the performance improvements overkNN vary, the highest accuracy achieved by
the hubness-aware classifiers remains higher than the highest accuracy achieved by thekNN
baseline, over the examined range of neighborhood sizes.

Figure 12 shows the same comparisons for hubness-proportional random label noise.
Unlike in the uniform case,kNN performs much worse throughout the tested range and
even fork = 20 and requires even larger neighborhoods to compensate for the same noise
rate.
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Fig. 12 Classification accuracy ofkNN, AKNN, HIKNN and h-FNN for a hubness-proportional random
label noise rate ofη = 0.3 over a range of increasing neighborhood sizes. Using largerneighborhoods
increases the robustness of the compared classification methods to mislabeling. The best overall results are
achieved by h-FNN and HIKNN.

Using large neighborhoods is not always possible, especially in class imbalanced data
with rare categories and small dispersed class clusters. Using larger neighborhoods in such
cases would breach the locality assumption and might compromise the precision on smaller
classes, thereby reducing the overall system effectiveness. This is why achieving good per-
formance for smaller neighborhood sizes is a highly desirable property.

7.4 Hubness-proportional Random Label Noise and Other Types of Classifiers

In addition to the experiments presented earlier, several standard non-kNN classifiers were
compared under the given noise models, in order to see whether the hubness-proportional
random label noise affects any of them in a different way thanthe uniform random label
noise.

We have compared J48 decision trees, multi-layer perceptron (MLP) and SVM in 10-
times 10-fold cross-validation on all previously examineddatasets under all examined noise
models for the noise rate ofη = 0.3. We have used MLP in the following modes: MLP(5)
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with 5 hidden nodes, MLP(20) with 20 hidden nodes and MLP(20,5) with two hidden
layers of 20 and 5 hidden nodes, respectively. SVM was evaluated both with the polyno-
mial kernel and the RBF kernel. The hyperparameters were determined based on a local
search on subsets of the training data. WEKA implementations were used for the experi-
ments (http://www.cs.waikato.ac.nz/ml/weka/). The experiment summaries are given
in Table 6.

In most data domains, there were no substantial differencesbetween algorithm perfor-
mance under uniform random label noise and the hubness-proportional random label noise
for these algorithms. The J48 implementation of decision trees seems to be highly suscepti-
ble to label noise in both noise models, unlike SVM.

The robustness of SVMs to hubness-proportional random label noise can be attributed to
the fact that their classification performance relies mostly on the quality of support vectors
and hubs in general are not always good support vectors in intrinsically high-dimensional
data. The hubness ratio that is defined as the ratio between good and bad occurrence frequen-
cies (BNk(x)

GNk(x)
) was shown to be more relevant in past experiments on SVMs. The percentage

of points with the hubness ratio close to 1 among the support vectors was shown to increase
with increasing data dimensionality [20]. These examples lie closer to the separating hyper-
plane than other examples, on average.

0

5

10

15

20

25

ImageNet Gaussian

mixtures

UCI UCR

A
c
c
u

ra
c
y

 l
o

ss
 u

n
d

e
r 

n
o

is
e

J4�

MLP(20)

SVM(poly)

��NN

(a) Uniform label noise

0

5

10

15

20

25

�������� G�������

��������

��� ���

A
c
c
u

ra
c
y

 l
o

ss
 u

n
d

e
r 

n
o

is
e

 4!

"#$&20'

*+"&,./0'

13:��

(b) Hubness-proportional label noise

Fig. 13 Absolute classification accuracy loss under the tested noise models, given for J48, MLP, SVM and
h-FNN. The hubness-aware h-FNN classifier exhibits a higheroverall robustness to label noise under the
tested noise models for the noise rate ofη = 0.3.
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The performance of hubness-aware classifiers seems to be competitive when compared
with the remaining non-kNN baselines. They clearly outperform the baselines on timeseries
data wherekNN is known to perform well. They seem only to be outperformedby SVM on
the tested Gaussian mixtures which were specifically designed to be challenging forkNN
classification, as discussed in the original paper [50].

The average absolute classification accuracy loss under noise for different approaches
is shown in Figure 13. The hubness-aware h-FNN classifiers exhibits a higher robustness
to both uniform and hubness-proportional random label noise for the tested noise level,
compared to J48, MLP and SVM.

8 Conclusions and Future Work

High data dimensionality poses significant challenges fork-nearest neighbor classification.
We have examined the influence of hubness as an aspect of the curse of dimensionality [5]
on the problem ofkNN classification with label noise. The emergence of hubs induces a
change in the distribution of influence that affects the susceptibility of k-nearest neighbor
methods to mislabeled training examples. Mislabeled hub points can potentially induce se-
vere misclassification.

In order to evaluate the risk posed by unreliable hub labels,we have defined hubness-
proportional random label noise, where the label flip probability η is modulated by the ratio
of the neighbor occurrence frequency and the neighborhood size. The proposed noise model
increases the probability of hub points being mislabeled. Our experiments reveal that the
proposed noise model increases the average percentage of label mismatches ink-nearest
neighbor sets and has a much greater impact on classifier performance than the uniform
random label noise.

It was shown that the hubness-correlated label noise can arise either naturally from sys-
tematic errors in the data or in adversarial scenarios.

Hubness-proportional random label noise model can be used as an adversarial model
that approximates a partially successful label flip attack that targets hub examples as most
relevant points in akNN-based system. We have demonstrated how certain properties of
hubs can be used under certain standard representations andmetrics to indirectly guess the
hubness of data points in order to select hub targets for mislabeling. Our simulations on
SMS message spam data indicate that the message totals of theTF-IDF weights can be used
to pinpoint hubs in the data, as their weight is significantlylower than that of the regular and
orphan messages. We have defined an inverse weight-proportional stochastic label noise
model and were able to approximate the negative effects of hubness-proportional random
label noise. Alternative adversarial hub-targeted scenarios were also discussed.

We have proposed to use the neighbor occurrence models for hubness-awarekNN clas-
sification of intrinsically high-dimensional data under label noise. Several recently pro-
posed hubness-aware classifiers were compared to severalkNN baselines in several dif-
ferent experimental setups: on correct data labels, on uniform label noise and on hubness-
proportional label noise. Hubness-based fuzzyk-nearest neighbor classification (h-FNN)
was determined to be most robust among the compared hubness-aware approaches across
different experimental setups on multiple data domains, including quantized image repre-
sentations, high-dimensional Gaussian mixtures, UCI dataand UCR time series data.

The comparisons with SVM, J48 decision trees and the multi-layer perceptron (MLP)
show that, while these non-kNN classification models are not in general susceptible to
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hubness-proportional random label noise, hubness-aware classifiers are overall competitive
under both examined noise models.

Hubness-based fuzzyk-nearest neighbor classification is implicitly robust to learning
with label noise, due to the nature of the voting procedure and the way the hubness-based
fuzzy votes are inferred. In future work we wish to explore combining the advantages of
h-FNN and HIKNN with other explicit noise handling strategies, including but not limited
to noise detection and removal. Strategies that properly filter hubs and ensure their label
consistency should be seriously considered. Additionally, we wish to explore the options for
combining noise-resilient boosting methods with hubness-aware classification.
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Table 2 Experiments on ImageNet quantized image data. Classification accuracy is given forkNN,
NWKNN, AKNN, hw-kNN, HIKNN, NHBNN and h-FNN, fork = 5. The symbols•/◦ denote statisti-
cally significant worse/better performance (p < 0.05) compared tokNN. The best result in each line is in
bold.

(a) Correct labels, no noise

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

iNet3ImbSift 88.0± 1.7 84.3± 1.9• 89.6± 1.7◦ 89.2± 1.6 89.4± 1.5 86.3± 1.7 88.8± 1.6
iNet4ImbSift 70.3± 1.5 69.4± 1.5 71.4± 1.5 71.4± 1.5 72.0± 1.4◦ 69.4± 1.5 72.0± 1.5◦
iNet5ImbSift 67.3± 1.8 63.9± 1.8• 70.4± 1.6◦ 70.1± 1.6◦ 70.6± 1.6◦ 63.6± 1.6• 69.8± 1.5◦
iNet6ImbSift 67.9± 1.7 65.5± 1.7• 69.7± 1.5 70.1± 1.6◦ 71.2± 1.6◦ 67.2± 1.7 70.7± 1.6◦
iNet7ImbSift 63.9± 2.1 63.3± 2.0 67.8± 2.0◦ 67.7± 1.9◦ 68.0± 2.1◦ 65.4± 2.0 67.9± 2.0◦
iNet3Sift 84.5± 1.4 83.3± 1.5 85.2± 1.4 85.6± 1.5◦ 85.7± 1.4◦ 85.1± 1.5 85.0± 1.4
iNet4Sift 67.5± 1.2 67.0± 1.1 67.9± 1.2 68.8± 1.2◦ 69.7± 1.1◦ 69.1± 1.2◦ 69.3± 1.2◦
iNet5Sift 62.4± 1.4 61.8± 1.3 65.3± 1.3◦ 65.7± 1.2◦ 66.7± 1.2◦ 65.0± 1.2◦ 67.4± 1.1◦
iNet6Sift 65.5± 1.3 64.8± 1.3 66.4± 1.2 67.2± 1.4◦ 68.1± 1.4◦ 66.9± 1.2◦ 67.5± 1.3◦
iNet7Sift 60.4± 1.1 60.5± 1.1 62.0± 1.0◦ 62.8± 0.9◦ 63.4± 1.0◦ 63.0± 0.9◦ 63.3± 0.9◦
iNet3Haar 99.9± 0.1 99.8± 0.1 99.6± 0.2 99.9± 0.1 99.9± 0.1 99.8± 0.1 99.9± 0.1
iNet4Haar 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0
iNet5Haar 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0 99.9± 0.0
iNet6Haar 99.8± 0.1 99.9± 0.0 99.6± 0.1 99.8± 0.1 99.8± 0.1 99.8± 0.0 99.8± 0.1
iNet7Haar 99.8± 0.0 99.9± 0.0 99.8± 0.0 99.8± 0.0 99.9± 0.0 99.8± 0.0 99.9± 0.0

AVG 79.8 78.9 81.0 81.2 81.6 80.0 81.4

(b) Noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

iNet3ImbSift 74.8± 2.6 69.3± 2.6• 85.0± 1.9◦ 81.1± 2.1◦ 84.1± 2.0◦ 76.3± 2.3 87.5± 1.7◦
iNet4ImbSift 59.4± 1.7 56.6± 1.9• 64.0± 1.4◦ 60.3± 1.7 65.8± 1.8◦ 66.5± 1.7◦ 69.0± 1.8◦
iNet5ImbSift 56.7± 1.6 53.0± 1.6• 64.5± 1.6◦ 59.0± 1.5◦ 64.5± 1.6◦ 60.7± 1.8◦ 67.8± 1.6◦
iNet6ImbSift 59.0± 1.9 55.8± 2.0• 65.7± 1.6◦ 61.2± 1.8◦ 65.0± 1.9◦ 62.5± 1.8◦ 67.5± 1.8◦
iNet7ImbSift 56.8± 1.9 53.8± 2.0• 61.2± 1.9◦ 59.9± 2.0◦ 63.0± 2.0◦ 60.5± 1.9◦ 65.7± 2.0◦
iNet3Sift 72.7± 1.8 69.8± 1.8• 78.1± 1.4◦ 75.4± 1.5◦ 78.8± 1.6◦ 80.3± 1.6◦ 82.4± 1.4◦
iNet4Sift 57.8± 1.4 56.6± 1.5• 60.0± 1.1◦ 58.9± 1.6 63.3± 1.5◦ 66.6± 1.4◦ 66.6± 1.4◦
iNet5Sift 52.6± 1.3 51.2± 1.3• 57.3± 1.3◦ 55.2± 1.2◦ 59.1± 1.1◦ 62.0± 1.1◦ 63.9± 1.2◦
iNet6Sift 56.8± 1.3 54.4± 1.2• 59.0± 1.4◦ 58.6± 1.4◦ 61.8± 1.3◦ 62.8± 1.4◦ 64.6± 1.4◦
iNet7Sift 53.6± 1.1 53.3± 1.0 52.0± 0.9• 53.3± 0.9 58.2± 1.0◦ 60.4± 0.9◦ 60.6± 1.0◦
iNet3Haar 88.2± 1.2 85.8± 1.4• 94.3± 1.0◦ 93.2± 1.1◦ 96.0± 0.7◦ 98.3± 0.6◦ 99.0± 0.4◦
iNet4Haar 90.4± 0.8 89.5± 0.9 95.8± 0.6◦ 94.8± 0.7◦ 97.9± 0.4◦ 99.6± 0.1◦ 99.5± 0.1◦
iNet5Haar 92.3± 0.7 91.2± 0.7• 96.2± 0.9◦ 95.0± 0.5◦ 98.3± 0.3◦ 99.7± 0.1◦ 99.6± 0.1◦
iNet6Haar 93.6± 0.7 91.3± 0.8• 98.1± 0.4◦ 95.8± 0.5◦ 98.0± 0.3◦ 99.2± 0.2◦ 99.4± 0.2◦
iNet7Haar 93.6± 0.5 92.7± 0.5• 94.3± 0.6◦ 95.8± 0.4◦ 98.5± 0.2◦ 99.7± 0.0◦ 99.6± 0.0◦

AVG 70.5 68.3 75.0 73.2 76.8 77.0 79.6

(c) Nk(x)-proportional noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

iNet3ImbSift 45.1± 2.3 35.3± 2.3• 81.9± 1.8◦ 69.4± 2.4◦ 75.2± 2.2◦ 69.2± 2.5◦ 86.2± 1.8◦
iNet4ImbSift 30.6± 1.4 28.0± 1.3• 62.1± 1.8◦ 46.0± 1.6◦ 56.2± 1.6◦ 64.3± 1.7◦ 68.8± 1.8◦
iNet5ImbSift 26.9± 1.6 23.8± 1.6• 63.8± 1.8◦ 42.3± 1.8◦ 52.6± 1.7◦ 56.9± 1.7◦ 67.3± 1.6◦
iNet6ImbSift 36.9± 1.7 32.2± 1.6• 64.8± 1.7◦ 51.2± 1.8◦ 58.5± 1.6◦ 61.3± 1.7◦ 67.8± 1.7◦
iNet7ImbSift 33.1± 2.0 28.6± 1.9• 60.0± 2.5◦ 47.9± 2.3◦ 55.2± 2.2◦ 58.1± 2.0◦ 65.2± 2.2◦
iNet3Sift 33.5± 2.1 29.8± 2.1• 75.2± 1.9◦ 55.7± 2.1◦ 62.1± 2.1◦ 76.7± 1.9◦ 80.5± 1.7◦
iNet4Sift 27.9± 1.3 27.2± 1.2 56.3± 1.4◦ 43.6± 1.4◦ 49.7± 1.5◦ 65.3± 1.3◦ 65.8± 1.3◦
iNet5Sift 29.4± 1.2 27.6± 1.2• 54.2± 1.3◦ 40.3± 1.2◦ 45.7± 1.3◦ 60.7± 1.0◦ 63.0± 1.2◦
iNet6Sift 31.6± 1.3 28.8± 1.3• 55.1± 1.4◦ 45.2± 1.5◦ 51.5± 1.6◦ 61.5± 1.4◦ 64.2± 1.5◦
iNet7Sift 26.4± 0.9 26.0± 0.9 51.8± 1.1◦ 38.6± 1.1◦ 46.9± 1.2◦ 59.5± 1.0◦ 60.3± 1.0◦
iNet3Haar 61.8± 2.1 58.5± 2.0• 90.5± 1.3◦ 87.7± 1.6◦ 93.3± 1.1◦ 98.4± 0.5◦ 99.5± 0.2◦
iNet4Haar 63.1± 1.3 63.5± 1.3 92.6± 1.2◦ 88.0± 1.0◦ 96.1± 0.6◦ 99.7± 0.1◦ 99.7± 0.1◦
iNet5Haar 66.0± 1.2 65.3± 1.3 94.1± 0.9◦ 89.2± 0.9◦ 97.2± 0.4◦ 99.6± 0.1◦ 99.7± 0.1◦
iNet6Haar 73.2± 1.2 70.0± 1.1• 96.4± 0.5◦ 91.5± 0.7◦ 97.4± 0.4◦ 99.4± 0.2◦ 99.6± 0.1◦
iNet7Haar 71.0± 0.9 70.8± 0.8 93.2± 0.7◦ 90.3± 0.5◦ 97.8± 0.3◦ 99.8± 0.0◦ 99.8± 0.0◦

AVG 43.8 41.0 72.8 61.8 69.0 75.4 79.2
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Table 3 Experiments on high-dimensional 10-class Gaussian mixtures. Classification accuracy is given for
kNN, NWKNN, AKNN, hw-kNN, HIKNN, NHBNN and h-FNN, fork = 5. The symbols•/◦ denote
statistically significant worse/better performance (p < 0.05) compared tokNN. The best result in each line
is in bold.

(a) Correct labels, no noise

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

GM1 48.8± 3.0 49.5± 3.2 79.2± 2.8◦ 64.9± 2.8◦ 63.1± 3.0◦ 73.3± 2.4◦ 69.9± 2.7◦
GM2 54.3± 2.9 55.7± 2.9◦ 82.4± 2.2◦ 73.8± 2.8◦ 69.3± 2.8◦ 78.2± 2.4◦ 76.5± 2.5◦
GM3 68.5± 2.6 65.7± 2.6• 87.0± 1.5◦ 82.2± 1.7◦ 81.3± 1.9◦ 84.8± 1.7◦ 84.4± 1.8◦
GM4 57.2± 2.2 58.5± 2.0 83.4± 2.0◦ 69.9± 2.3◦ 68.7± 2.4◦ 77.3± 2.1◦ 75.0± 2.3◦
GM5 63.7± 2.6 62.6± 2.6 83.2± 1.9◦ 77.7± 2.0◦ 77.0± 2.2◦ 82.5± 2.1◦ 81.9± 2.1◦
GM6 65.1± 2.7 63.4± 2.8• 80.0± 2.4◦ 78.7± 2.1◦ 76.8± 2.3◦ 81.8± 2.3◦ 80.0± 2.5◦
GM7 69.9± 2.1 68.1± 2.2• 90.7± 1.6◦ 82.3± 1.9◦ 81.3± 1.9◦ 85.7± 1.4◦ 84.7± 1.8◦
GM8 72.3± 2.4 71.1± 2.5 84.9± 1.9◦ 79.6± 2.1◦ 79.7± 2.2◦ 83.6± 2.0◦ 83.1± 2.0◦
GM9 62.3± 2.5 61.7± 2.5 84.0± 1.8◦ 73.0± 2.3◦ 72.8± 2.3◦ 81.8± 2.1◦ 78.8± 2.2◦
GM10 63.3± 3.0 64.1± 2.8 80.0± 2.5◦ 75.3± 2.5◦ 73.3± 2.4◦ 81.3± 2.0◦ 79.0± 2.3◦

AVG 62.6 62.0 83.5 75.7 74.3 81.0 79.3

(b) Noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

GM1 46.2± 3.1 44.5± 3.2 71.3± 2.4◦ 53.8± 3.0◦ 58.2± 3.1◦ 66.4± 2.5◦ 66.1± 3.1◦
GM2 51.5± 2.5 51.1± 2.4 75.2± 2.3◦ 58.9± 2.3◦ 64.0± 2.2◦ 71.7± 2.1◦ 73.4± 2.0◦
GM3 60.9± 2.4 58.0± 2.4• 81.1± 2.0◦ 67.4± 2.3◦ 73.4± 2.3◦ 81.5± 1.8◦ 82.0± 1.7◦
GM4 50.7± 2.7 50.7± 2.7 71.7± 2.3◦ 57.9± 2.6◦ 62.8± 2.7◦ 69.7± 2.2◦ 71.1± 2.2◦
GM5 56.1± 2.1 53.4± 2.3• 73.1± 1.9◦ 63.0± 2.3◦ 69.2± 2.0◦ 76.3± 2.0◦ 77.4± 2.0◦
GM6 58.6± 2.9 56.7± 3.0• 75.3± 2.7◦ 66.4± 2.6◦ 71.3± 2.8◦ 75.2± 2.5◦ 76.7± 2.6◦
GM7 62.1± 2.8 59.1± 2.7• 82.3± 2.1◦ 68.8± 2.5◦ 74.9± 2.3◦ 81.6± 2.0◦ 82.8± 2.1◦
GM8 62.1± 2.4 59.8± 2.6• 79.5± 2.1◦ 65.7± 2.6◦ 73.4± 2.1◦ 78.9± 1.8◦ 79.9± 2.0◦
GM9 56.4± 2.3 56.1± 2.4 76.5± 2.3◦ 62.1± 2.3◦ 67.7± 2.4◦ 76.3± 2.3◦ 76.0± 2.2◦
GM10 55.4± 2.7 54.8± 2.8 72.7± 2.5◦ 61.3± 2.7◦ 65.9± 2.6◦ 73.9± 2.4◦ 75.0± 2.4◦

AVG 56.0 54.4 75.9 62.5 68.1 75.1 76.0

(c) Nk(x)-proportional noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

GM1 28.3± 3.1 24.5± 2.7• 63.7± 3.1◦ 42.3± 2.9◦ 48.5± 2.8◦ 64.3± 2.9◦ 62.2± 3.2◦
GM2 29.3± 2.7 25.8± 2.6• 68.8± 2.2◦ 46.7± 2.6◦ 53.9± 2.8◦ 70.2± 2.6◦ 69.7± 2.6◦
GM3 34.1± 2.5 31.8± 2.7• 76.9± 2.2◦ 54.5± 2.9◦ 64.9± 2.4◦ 79.7± 2.0◦ 80.3± 2.0◦
GM4 32.2± 2.4 30.3± 2.4• 62.3± 2.8◦ 49.7± 2.4◦ 57.9± 2.5◦ 69.2± 2.0◦ 71.7± 2.2◦
GM5 31.0± 2.2 28.2± 2.2• 70.9± 2.2◦ 51.1± 2.3◦ 62.4± 2.2◦ 75.1± 2.0◦ 76.7± 2.1◦
GM6 38.9± 2.6 37.0± 2.6• 68.2± 2.7◦ 55.5± 2.8◦ 64.5± 2.5◦ 73.3± 2.2◦ 74.8± 2.1◦
GM7 37.5± 2.4 34.7± 2.5• 77.7± 1.9◦ 58.6± 2.7◦ 68.5± 2.5◦ 81.5± 2.0◦ 81.6± 2.0◦
GM8 39.0± 2.8 36.1± 2.7• 74.4± 2.4◦ 57.7± 2.6◦ 67.1± 2.5◦ 78.8± 2.1◦ 77.3± 1.9◦
GM9 33.0± 2.4 31.7± 2.4 70.4± 2.4◦ 50.5± 2.6◦ 59.9± 2.7◦ 74.8± 2.3◦ 76.0± 2.2◦
GM10 35.3± 2.9 32.8± 2.9• 67.7± 2.7◦ 52.3± 2.9◦ 60.0± 2.7◦ 73.9± 2.4◦ 76.6± 2.6◦

AVG 33.8 31.3 70.1 51.9 60.8 74.1 74.7
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Table 4 Experiments on UCI data. Classification accuracy is given for kNN, NWKNN, AKNN, hw-kNN,
HIKNN, NHBNN and h-FNN, fork = 5. The symbols•/◦ denote statistically significant worse/better
performance (p < 0.05) compared tokNN. The best result in each line is in bold.

(a) Correct labels, no noise

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

arrhythmia 60.4± 4.8 58.6± 5.2 57.9± 4.4• 60.3± 4.7 61.2± 4.9 54.7± 4.5• 62.1± 5.1
ozone 93.3± 0.9 91.0± 1.1• 93.6± 0.9 93.5± 0.9 93.7± 0.9 88.7± 1.3• 93.7± 0.9
ecoli 86.7± 3.7 85.4± 3.9 85.3± 4.0 86.4± 3.9 86.6± 3.8 85.9± 4.1 87.3± 3.7
gisette 96.2± 0.5 96.2± 0.5 97.4± 0.4◦ 97.1± 0.4◦ 96.8± 0.4◦ 96.8± 0.5◦ 96.7± 0.5
glass 68.0± 6.9 68.1± 6.9 66.1± 7.4 67.6± 6.8 68.7± 6.8 65.2± 7.5 66.9± 6.9
haberman 71.2± 4.4 67.6± 5.3• 72.2± 5.1 71.5± 4.5 71.1± 4.9 69.9± 5.6 71.8± 5.0
ionosphere 84.3± 4.2 85.2± 4.1 94.7± 2.9◦ 88.4± 3.6◦ 87.8± 3.9◦ 92.2± 3.5◦ 89.8± 3.7◦
mfeat-factors 95.3± 1.0 95.6± 1.0◦ 92.9± 1.3• 94.7± 1.1 95.6± 1.0◦ 94.8± 1.1 95.2± 1.0
mfeat-fourier 84.0± 1.5 83.8± 1.4 80.2± 1.9• 83.8± 1.7 83.8± 1.7 83.5± 1.5 83.8± 1.5
mfeat-karhunen 97.6± 0.7 97.6± 0.7 96.7± 0.7• 97.4± 0.7 97.7± 0.7 97.5± 0.7 97.6± 0.7
Iris 96.5± 2.8 96.5± 2.7 95.8± 3.2 96.8± 2.7 96.9± 2.7 97.1± 2.6 97.3± 2.7
segment 94.6± 1.0 96.5± 0.7◦ 93.7± 1.1• 94.8± 1.0 96.2± 0.8◦ 95.2± 0.9 95.4± 0.9◦
sonar 80.9± 6.3 82.4± 6.0 81.0± 6.3 79.7± 6.5 82.7± 6.0 80.1± 6.6 80.9± 6.2
vehicle 65.5± 3.6 65.8± 3.7 62.7± 3.3• 65.0± 3.6 64.9± 3.6 61.8± 3.6• 63.4± 3.3•
ovarian 92.7± 3.9 93.0± 3.7 89.1± 4.4• 92.7± 3.7 93.4± 3.5 93.4± 3.0 93.3± 3.6

AVG 84.5 84.2 84.0 84.7 85.1 83.8 85.0

(b) Noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

arrhythmia 54.2± 5.4 45.6± 5.5• 43.8± 4.8• 52.0± 5.2 58.4± 5.6◦ 42.9± 5.7• 59.1± 5.7◦
ozone 77.1± 1.6 72.9± 1.7• 85.3± 1.4◦ 81.0± 1.8◦ 81.5± 1.8◦ 66.5± 2.1• 86.3± 1.4◦
ecoli 74.9± 5.3 67.3± 6.0• 77.7± 5.5 78.8± 5.5◦ 81.7± 4.5◦ 78.0± 5.4 84.1± 4.4◦
gisette 79.8± 1.1 79.8± 1.1 89.7± 0.8◦ 84.9± 0.9◦ 85.3± 0.9◦ 92.2± 0.7◦ 91.5± 0.7◦
glass 61.4± 6.6 57.4± 6.4• 50.2± 9.1• 58.4± 6.9 62.1± 6.7 58.4± 7.4 60.7± 7.3
haberman 65.5± 6.5 61.4± 6.7• 55.6± 6.8• 65.1± 6.8 64.2± 7.4 60.7± 6.6• 64.6± 7.2
ionosphere 75.9± 5.8 72.3± 5.7• 76.4± 5.4 80.3± 5.3◦ 79.6± 4.9◦ 85.3± 4.5◦ 85.4± 4.3◦
mfeat-factors 89.3± 1.4 88.5± 1.4 88.5± 1.6 90.2± 1.2 93.2± 1.0◦ 93.7± 1.1◦ 94.3± 1.0◦
mfeat-fourier 77.8± 1.8 76.9± 1.8 76.2± 2.3• 77.5± 1.8 81.3± 1.6◦ 82.7± 1.7◦ 83.0± 1.7◦
mfeat-karhunen 91.5± 1.3 90.9± 1.4 92.9± 1.0◦ 92.8± 1.3◦ 95.4± 0.9◦ 96.6± 0.9◦ 96.6± 0.8◦
Iris 80.6± 8.7 77.6± 8.9 89.1± 5.7◦ 81.4± 7.6 82.2± 7.9 89.3± 7.0◦ 83.6± 7.4
segment 87.4± 1.6 78.1± 1.9• 86.4± 1.5 89.0± 1.6◦ 86.8± 1.6 91.3± 1.4◦ 91.5± 1.3◦
sonar 64.3± 7.8 66.2± 7.8 57.3± 7.5• 66.2± 6.6 66.9± 6.1◦ 63.1± 7.3 65.7± 7.2
vehicle 56.2± 3.9 55.3± 3.8 57.7± 3.3 58.7± 3.3◦ 59.8± 3.4◦ 59.3± 3.7◦ 60.5± 3.6◦
ovarian 80.6± 5.7 80.4± 5.6 76.0± 5.8• 80.6± 5.4 82.2± 5.3 83.5± 5.0◦ 82.2± 5.5

AVG 74.4 71.4 73.5 75.8 77.4 76.2 79.3

(c) Nk(x)-proportional noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

arrhythmia 43.3± 5.7 36.2± 5.2• 45.2± 5.3 46.2± 5.2 56.4± 5.3◦ 39.2± 5.1 60.2± 5.1◦
ozone 64.9± 1.9 60.7± 2.0• 83.3± 1.4◦ 79.0± 1.8◦ 78.0± 1.9◦ 64.5± 2.1 85.0± 1.5◦
ecoli 73.1± 5.3 62.3± 6.1• 79.4± 5.0◦ 78.7± 5.0◦ 80.6± 4.7◦ 77.4± 4.9◦ 83.9± 4.5◦
gisette 49.6± 1.4 49.6± 1.4 78.9± 1.2◦ 76.4± 1.1◦ 71.6± 1.3◦ 90.7± 0.8◦ 90.9± 0.8◦
glass 59.9± 7.8 56.8± 7.6 55.3± 7.4• 64.0± 7.4 65.5± 7.3◦ 61.8± 8.0 66.3± 7.3◦
haberman 57.2± 5.1 54.5± 5.5• 64.9± 5.3◦ 60.7± 5.0◦ 59.3± 5.5 57.7± 5.9 61.7± 5.2◦
ionosphere 45.3± 5.8 44.3± 5.7 57.7± 6.0◦ 63.9± 5.0◦ 69.4± 5.2◦ 79.8± 4.2◦ 78.7± 3.9◦
mfeat-factors 82.8± 1.9 80.7± 2.0• 89.8± 1.6◦ 88.8± 1.6◦ 92.7± 1.3◦ 93.7± 1.1◦ 94.0± 1.2◦
mfeat-fourier 71.7± 1.8 70.8± 1.7 77.1± 1.7◦ 78.5± 1.6◦ 81.7± 1.5◦ 82.9± 1.4◦ 83.4± 1.3◦
mfeat-karhunen 85.2± 1.8 84.8± 1.9 92.6± 1.3◦ 92.7± 1.3◦ 96.4± 0.8◦ 96.9± 0.7◦ 97.3± 0.6◦
Iris 79.6± 7.8 71.8± 8.7• 87.8± 7.2◦ 91.1± 5.3◦ 89.7± 5.5◦ 96.0± 3.6◦ 94.4± 4.2◦
segment 85.7± 1.7 76.7± 1.9• 85.0± 1.5 90.4± 1.4◦ 88.5± 1.3◦ 92.9± 1.1◦ 92.3± 1.2◦
sonar 64.0± 7.8 65.1± 7.7 65.2± 6.7 65.7± 6.7 66.1± 6.8 69.1± 6.7◦ 66.6± 6.8
vehicle 55.3± 3.7 54.6± 3.6 57.5± 3.4 59.7± 3.4◦ 61.3± 3.4◦ 59.1± 3.7◦ 61.0± 3.5◦
ovarian 61.7± 6.5 62.8± 6.7 74.4± 6.3◦ 76.1± 5.9◦ 77.0± 6.0◦ 79.6± 5.4◦ 81.7± 5.0◦

AVG 65.3 62.1 72.9 74.1 75.6 76.1 79.8
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Table 5 Experiments on UCR time series data. Classification accuracy is given forkNN, NWKNN, AKNN,
hw-kNN, HIKNN, NHBNN and h-FNN, fork = 5. The symbols•/◦ denote statistically significant
worse/better performance (p < 0.05) compared tokNN. The best result in each line is in bold.

(a) Correct labels, no noise

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

CricketX 79.3 ± 2.8 81.9 ± 2.8◦ 76.0± 3.1• 79.9± 2.4 82.4 ± 2.6◦ 79.3 ± 2.9 80.9 ± 2.9◦
CricketY 79.9 ± 2.8 82.3 ± 2.5◦ 73.4± 2.8• 79.3± 2.7 82.5 ± 2.5◦ 80.0 ± 2.7 81.9 ± 2.4◦
CricketZ 80.9 ± 3.2 83.0 ± 2.7◦ 76.7± 3.1• 80.7± 3.1 83.5 ± 2.7◦ 79.6 ± 3.2 81.6 ± 2.8
FacesUCR 97.3± 0.7 98.2 ± 0.6◦ 97.0± 0.7 97.2± 0.7 98.2 ± 0.5◦ 97.5 ± 0.6 98.0 ± 0.6◦
MedicalImages 79.9± 2.5 81.4 ± 2.3◦ 77.9± 2.8• 80.3± 2.3 81.9 ± 2.3◦ 74.9 ± 2.7• 80.8 ± 2.3
MALLAT 98.6 ± 0.4 98.9 ± 0.4◦ 98.6± 0.4 98.7± 0.5 98.9 ± 0.4◦ 98.6 ± 0.4 98.8 ± 0.4
Motes 94.1 ± 1.3 94.9 ± 1.3◦ 94.0± 1.5 94.5± 1.2 95.3 ± 1.2◦ 94.6 ± 1.2 95.0 ± 1.3◦
OliveOil 82.4 ± 10.8 89.4 ± 8.8◦ 80.3± 13.0 84.8± 11.1 87.4 ± 9.4 83.9 ± 11.8 83.3 ± 11.5
SonyAIBO 97.3 ± 1.3 97.3 ± 1.3 98.7± 1.0◦ 97.9± 1.2 97.7 ± 1.3 97.8 ± 1.3 98.1 ± 1.2◦
SonyAIBOII 96.4 ± 1.3 97.0 ± 1.2◦ 96.7± 1.3 96.8± 1.2 97.2 ± 1.1◦ 96.9 ± 1.1 97.2 ± 1.1◦
SwedishLeaf 84.0± 2.0 84.6 ± 2.0 84.6± 2.0 84.9± 2.2 85.6 ± 2.1◦ 85.5 ± 2.0◦ 85.2 ± 2.0◦
Symbols 97.7 ± 0.9 98.3 ± 0.9◦ 97.5± 1.0 98.0± 0.9 98.2 ± 1.0◦ 97.9 ± 0.9 98.0 ± 1.0
SyntheticControl 99.2± 0.7 99.2 ± 0.7 97.5± 1.4• 99.5± 0.6◦ 99.2 ± 0.7 99.4 ± 0.6 99.4 ± 0.7
Trace 99.5 ± 1.0 100.0± 0.0◦ 99.5± 1.0 98.9± 4.6• 100.0± 0.0◦ 99.5 ± 1.0 99.9 ± 0.3◦
TwoPatterns 100.0± 0.0 100.0± 0.0 99.9± 0.0 99.9± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

AVG 91.1 92.4 89.9 91.4 92.5 91.0 91.9

(b) Noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

CricketX 74.0± 3.7 67.7± 3.8• 66.1± 3.8• 73.0± 3.7 76.1± 3.4◦ 75.8± 3.3 78.1± 3.0◦
CricketY 72.1± 3.2 69.2± 3.3• 63.1± 3.9• 71.0± 3.1 75.5± 3.2◦ 75.8± 3.2◦ 78.0± 3.2◦
CricketZ 74.4± 3.6 70.1± 3.5• 62.9± 3.8• 73.8± 3.5 77.1± 3.0◦ 76.2± 3.8 78.4± 3.2◦
FacesUCR 93.9± 1.0 89.8± 1.5• 92.4± 1.2• 94.4± 1.1 95.8± 0.8◦ 96.4± 0.8◦ 97.2± 0.7◦
MedicalImages 72.6± 2.4 59.6± 3.0• 73.5± 2.8 72.9± 2.2 73.1± 2.5 64.1± 3.1• 76.9± 2.2◦
MALLAT 92.8 ± 1.1 83.7± 1.5• 95.3± 1.1◦ 94.6± 1.1◦ 91.5± 1.2• 97.9± 0.6◦ 97.4± 0.7◦
Motes 79.2± 2.5 74.9± 2.8• 83.8± 2.3◦ 84.1± 2.4◦ 82.4± 2.6◦ 87.1± 2.3◦ 85.7± 2.3◦
OliveOil 72.8± 13.7 74.4± 12.4 76.1± 12.2 74.0± 13.6 73.7± 15.7 78.8± 13.9◦ 79.6± 13.8◦
SonyAIBO 77.1± 3.8 76.9± 3.8 88.3± 2.9◦ 86.5± 3.0◦ 88.3± 3.0◦ 93.0± 2.4◦ 92.4± 2.7◦
SonyAIBOII 79.8± 2.9 78.0± 3.2 85.2± 2.7◦ 85.0± 2.7◦ 86.0± 2.6◦ 88.5± 2.4◦ 89.2± 2.1◦
SwedishLeaf 79.4± 2.7 77.0± 2.8• 75.5± 2.9• 80.0± 2.6 82.5± 2.6◦ 83.5± 2.5◦ 83.3± 2.6◦
Symbols 93.6± 1.7 84.8± 2.4• 90.7± 1.9• 95.0± 1.4◦ 93.7± 1.4 97.4± 0.9◦ 96.6± 1.1◦
SyntheticControl 92.2± 2.5 92.2± 2.6 91.9± 2.4 92.5± 2.8 96.8± 1.7◦ 99.0± 0.9◦ 98.4± 1.1◦
Trace 89.0± 5.8 86.5± 5.9• 93.2± 4.0◦ 94.1± 4.4◦ 93.0± 4.2◦ 97.6± 2.8◦ 95.3± 3.6◦
TwoPatterns 91.2± 0.8 90.6± 0.9• 95.7± 0.5◦ 95.4± 0.5◦ 97.5± 0.4◦ 99.5± 0.2◦ 99.3± 0.2◦

AVG 82.3 78.4 82.3 84.4 85.5 87.4 88.4

(c) Nk(x)-proportional noise rateη = 0.3

Data set kNN NWKNN AKNN hw-kNN HIKNN NHBKNN h-FNN

CricketX 68.4± 3.7 63.3± 3.8• 63.0± 4.0• 72.5± 3.3◦ 77.8± 3.4◦ 76.4± 3.2◦ 78.5± 3.0◦
CricketY 68.1± 4.0 62.3± 4.2• 63.2± 3.8• 72.4± 3.5◦ 75.3± 3.4◦ 76.3± 3.5◦ 79.0± 3.4◦
CricketZ 69.1± 4.1 63.4± 4.4• 62.0± 4.2• 72.7± 4.2◦ 76.0± 3.9◦ 74.7± 3.9◦ 76.7± 3.9◦
FacesUCR 87.0± 1.6 82.5± 1.8• 90.7± 1.4◦ 93.1± 1.1◦ 96.0± 0.8◦ 96.7± 0.8◦ 97.5± 0.6◦
MedicalImages 70.9± 2.5 58.9± 3.0• 71.6± 3.0 73.5± 2.7◦ 73.4± 2.8◦ 63.3± 3.3• 76.8± 2.8◦
MALLAT 85.7 ± 1.6 75.8± 2.2• 96.0± 0.9◦ 93.9± 0.9◦ 91.8± 1.2◦ 97.8± 0.6◦ 97.7± 0.6◦
Motes 66.8± 2.6 65.5± 2.6 80.5± 2.5◦ 80.0± 2.3◦ 78.7± 2.2◦ 83.3± 2.1◦ 83.0± 2.0◦
OliveOil 63.4± 15.7 65.1± 15.1 69.3± 14.4 77.2± 12.6◦ 80.6± 10.9◦ 81.0± 11.7◦ 79.5± 11.0◦
SonyAIBO 61.8± 4.1 61.4± 4.0 85.0± 3.2◦ 81.6± 3.5◦ 82.5± 3.4◦ 89.3± 2.5◦ 89.5± 2.7◦
SonyAIBOII 66.7± 3.4 65.9± 3.2 83.7± 2.7◦ 83.2± 2.9◦ 85.0± 2.6◦ 89.6± 2.6◦ 91.1± 2.3◦
SwedishLeaf 72.2± 3.0 69.8± 2.8• 75.5± 2.8◦ 77.1± 3.0◦ 82.3± 2.6◦ 83.2± 2.3◦ 84.0± 2.4◦
Symbols 81.6± 3.1 72.3± 3.1• 91.8± 1.6◦ 92.3± 1.8◦ 92.3± 1.8◦ 96.8± 1.2◦ 96.5± 1.3◦
SyntheticControl 74.2± 4.0 73.7± 4.1 90.4± 2.6◦ 91.4± 2.3◦ 97.5± 1.3◦ 99.2± 0.7◦ 99.2± 0.7◦
Trace 82.0± 5.9 80.9± 6.1 89.2± 4.8◦ 95.9± 3.3◦ 94.6± 3.9◦ 97.6± 2.4◦ 97.0± 2.8◦
TwoPatterns 75.1± 1.3 74.4± 1.3 93.8± 0.7◦ 92.9± 0.7◦ 97.2± 0.4◦ 99.7± 0.1◦ 99.6± 0.1◦

AVG 72.9 69.0 80.4 83.3 85.4 87.0 88.4
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Table 6 Experiments on non-kNN classifiers: decision trees, neuralnetworks and support vector machines.
Classification accuracy is given for J48, MLP and SVM with thepolynomial and RBF kernel. The three
included result columns for the multi-layer perceptron correspond to its operating modes using 5 hidden nodes
(MLP(5)), 20 hidden nodes (MLP(20)) and two layers of 20 and 5hidden nodes, respectively (MLP(20,5)).
In most data domains, there were no significant differences between the algorithm performance under the
uniform random label noise model and the hubness-proportional random label noise model.

Domain Noise Model J48 MLP MLP MLP SVM SVM
(5) (20) (20, 5) (poly) (RBF)

ImageNet no noise 73.3 73.1 70.9 67.1 85.0 84.8
random 57.8 65.7 59.9 64.1 80.3 79.9
hubness-pr. 57.5 68.2 64.7 65.8 80.0 80.0

Gaussian mixtures no noise 47.1 84.0 95.1 91.1 96.4 96.5
random 36.2 69.4 75.6 71.2 92.2 92.6
hubness-pr. 36.5 69.0 74.7 70.4 91.7 91.9

UCI no noise 82.7 82.1 83.5 81.4 87.1 78.1
random 66.8 74.9 74.2 72.2 78.8 70.0
hubness-pr. 66.0 75.0 74.0 72.4 78.8 69.1

UCR no noise 77.0 77.3 83.8 79.7 85.1 81.7
random 57.2 67.1 68.9 64.7 75.1 75.0
hubness-pr. 56.1 67.3 68.4 65.5 75.4 74.6


