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Abstract. Due to its pharmaceutical applications, one of the most promi-
nent machine learning challenges in bioinformatics is the prediction of
drug–target interactions. State-of-the-art approaches are based on vari-
ous techniques, such as matrix factorization, restricted Boltzmann ma-
chines, network-based inference and bipartite local models (BLM). In this
paper, we extend BLM by the incorporation of a hubness-aware regres-
sion technique coupled with an enhanced representation of drugs and tar-
gets in a multi-modal similarity space. Additionally, we propose to build a
projection-based ensemble. Our Advanced Local Drug-Target Interaction
Prediction technique (ALADIN) is evaluated on publicly available real-
world drug–target interaction datasets. The results show that our ap-
proach statistically significantly outperforms BLM-NII, a recent version
of BLM, as well as NetLapRLS and WNN-GIP.

Keywords: drug–target interaction prediction, bipartite local models,
ALADIN

1 Introduction

Prediction of drug–target interactions is one of the most prominent machine
learning applications in the pharmaceutical industry, the importance of which
is underlined by the fact that both time and expenditure related to drug devel-
opment are enormous: on average, it costs ≈$1.8 billion and takes more than
10 years to bring a new drug to the market [17]. Drug–target interaction predic-
tion (DTI) techniques promise to reduce the aforementioned cost and time, and
to support drug repositioning [40], i.e., the use of an existing medicine to treat
a disease that has not been treated with that drug yet.

Computational methods for DTI include approaches based on molecular
docking simulations [9], [15] and ligand chemistry [21], [25]. Furthermore, text
mining techniques have been proposed to identify biomedical entities and rela-
tions between them [7], [13], [28], [42]. However, a serious limitation of docking-
based approaches is that they require information about the three-dimensional
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structure of candidate drugs and targets which is often not available, espe-
cially for G-protein coupled receptors (GPCRs) and ion channels. Addition-
ally, the performance of ligand-based approaches is known to decrease if only
few ligands are known. Therefore, machine learning techniques have been pro-
posed for DTI [11], [19], [39]. Recent approaches are based on matrix factoriza-
tion [5], [14], [41], support vector regression [34, 35], restricted Boltzmann ma-
chines [37], network-based inference [8], [10], decision lists [30] and bipartite local
models (BLM) [4] with semi-supervised prediction [38], improved kernels [22] and
the incorporation of neighbor-based interaction-profile inferring [23].

Real-world datasets in biology, chemistry and medicine [1], including drug–
target interaction networks, have been shown to contain hubs, i.e., vertices that
are connected to surprisingly many other vertices. For example, in the Enzyme
dataset (described in Section 5.1), the vast majority of targets have less then 5
interactions, while some of the targets are very popular: each of 30 most popular
targets interacts with 20 drugs at least. Despite such observations, none of the
aforementioned variants of BLM took the presence of hubs into account. Further-
more, the presence of hubs has been observed in nearest neighbor graphs [29],
which lead to the development of hubness-aware classifiers [33] and regression
techniques [6]. Although hubness-aware techniques are among the most promis-
ing recent machine learning approaches, their potential to enhance drug–target
interaction prediction methods has not been exploited yet.

In this paper, we extend BLM by the incorporation of a hubness-aware re-
gression approach. Additionally, we propose an enhanced representation of drugs
and targets in a multi-modal similarity space and build a projection-based en-
semble. We call the resulting approach Advanced Local Drug-Target Interaction
Prediction, or ALADIN for short. In order to assist reproducibility of our work,
we perform experiments on publicly available real-world drug–target interac-
tion datasets. The results show that our approach outperforms BLM-NII [23], a
recent version of BLM, and two other drug–target prediction techniques.

The rest of this paper is organized as follows: in Section 2, we define the drug–
target interaction prediction problem, this is followed by the review of BLM and
hubness-aware regression in Section 3. We describe our approach, ALADIN, in
Section 4 and present the results of experimental evaluation in Section 5. Finally,
we conclude in Section 6.

2 Basic Notation and Problem Formulation

First, we define the Drug–Target Interaction Prediction problem. We are given
a set D = {d1, . . . , dn} of n drugs, a set T = {t1, . . . , tm} of m pharmaceutical
targets, an n× n drug similarity matrix SD, an m×m target similarity matrix
ST and an n×m interaction matrix M. Each entry sDi,j of SD (and sTi,j of ST ,
resp.) describe the similarity between drugs di and dj (targets ti and tj). Each
entry mi,j of M denotes if drug di and target tj are known to interact:

mi,j =

{
1 if there is a known interaction between di and tj

0 otherwise.
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Fig. 1. Two independent predictions of Bipartite Local Models.

This formulation is in accordance with the usual setting in which only positive
information is available: in case if mi,j = 0, the corresponding drug di and target
tj may or may not interact, therefore, we call ui,j = (di, tj) an unknown pair.
The task is to predict the likelihood of interaction for each unknown pair.

At the first glance, the above DTI problem seem to be similar to the problems
considered in the recommender systems community. Note, however, that most
recommender techniques consider only the interactions (“ratings”) because even
a few ratings are thought to be more informative than metadata, such as users’
similarity based on their demographic information [27]. In contrast, drug–drug
and target–target similarities play an essential role in DTI.

3 Background

In this section, we review the BLM approach and hubness-aware error correction
for nearest neighbor regression.

3.1 Bipartite Local Model

BLM considers DTI as a link prediction problem in bipartite graphs [4]. The
vertices in one of the vertex classes correspond to drugs, whereas the vertices in
the other vertex class correspond to targets. There is an edge between drug di
and target tj if and only if mi,j = 1.

The likelihood of unknown interactions is predicted as follows: we consider
an unknown pair ui,j = (di, tj) and calculate the likelihood of interaction as the
aggregate of two independent predictions.

The first prediction (Fig. 1, left panel) is based on the relations between di
and the targets. Each target tk (except tj) is labeled as “1” or “0” depending on
mi,k. Then a model is trained to distinguish “1”-labeled and “0”-labeled targets.
Subsequently, this model is applied to predict the likelihood of interaction for
the unknown pair ui,j . This first prediction is denoted by ŷ′i,j .

The second prediction, ŷ′′i,j , is obtained in a similar fashion, but instead of
considering the interactions of drug di and labeling the targets, the interactions
of target tj are considered and drugs are labeled (Fig. 1, right panel). The models
that make the first and second predictions are called local models.
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In order to obtain the final prediction of the BLM, we average the predictions
of the aforementioned local models:

ŷi,j =
ŷ′i,j + ŷ′′i,j

2
(1)

Note that instead of averaging, other aggregation functions, such as minimum
or maximum are possible as well.

BLM is a generic framework in which various regressors or classifiers can be
used as local models. Bleakley and Yamanishi [4] used support vector machines
with a domain-specific kernel. In contrast, we propose to use a hubness-aware
regression technique, ECkNN, which is described next.

3.2 ECkNN: k-Nearest Neighbor Regression with Error Correction

In the last decades, various regression schemes have been introduced, such as
linear and polynomial regression, support vector regression, neural networks, etc.
One of the most popular regression techniques is based on k-nearest neighbors:
when predicting the numeric label on an instance x with k-nearest neighbor
regression, the k-nearest neighbors of x (i.e., k instances that are most similar
to x) are determined and the average of their labels is calculated as the predicted
label of x. In our case, instances may either correspond to drugs or targets,
depending on whether the first or the second BLM-prediction is calculated.

While being intuitive and simple to implement, k-nearest neighbor regression
is well-understood from the point of view of theory as well, see e.g. [3], and the
references therein for an overview of the most important theoretical results.
The theoretical results are also justified by empirical studies: for example, in
their recent paper, Stensbo-Smidt et al. found that nearest neighbor regression
outperforms model-based prediction of star formation rates [31], while Hu et al.
showed that a model based on k-nearest neighbor regression is able to estimate
the capacity of lithium-ion batteries [18].

Despite all of the aforementioned advantages of k-nearest neighbor regression,
one of its recently explored shortcomings is its suboptimal performance in the
presence of bad hubs. Intuitively, bad hubs are instances that appear as nearest
neighbors of many other instances, but have substantially different labels from
those instances. The presence of bad hubs has been shown to be related to the
intrinsic dimensionality of the data. This means, roughly speaking, that bad
hubs are expected in complex data, such as drug–target interaction data. For a
more detailed discussion, we refer to [6].

In order to alleviate the detrimental effect of bad hubs, in [6] we proposed an
error correction technique which is reviewed next. We define the corrected label
yc(x) of a training instance x as

yc(x) =


1
|Rx|

∑
xi∈Rx

y(xi) if |Rx| ≥ 1

y(x), otherwise
, (2)
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where y(xi) denotes the original (i.e., uncorrected) label of instance xi, and Rx

is the set of “reverse neighbors”, i.e. the set of training instances that have x as
one of their k-nearest neighbors:

Rx = {∀xi|x ∈ N (xi)} (3)

where N (xi) denotes the set of k-nearest neighbors of xi.
In order to make predictions, k-nearest neighbor regression with error cor-

rection (ECkNN) uses the corrected labels. Given a “new” (unlabeled) instance
x′, its predicted label ŷ(x′) is calculated as follows:

ŷ(x′) =
1

k

∑
xi∈N (x′)

yc(xi). (4)

4 Our approach

Next, we present ALADIN, our Advanced Local Drug-Target Interaction Pre-
diction approach. Following subsections describe the components of ALADIN.

4.1 Similarity-based Representation

The given drug–drug similarities allow us to represent drugs in the similarity
space: in particular, drug di is represented by the vector (sDi,1, . . . s

D
i,n). Given

the target similarity matrices, targets may be represented in an analogous way,
i.e., using their similarities to all the targets.

Additionally to the given drug–drug and target–target similarities, we pro-
pose to compute drug–drug and target–target similarities based on the known
interactions (i.e., interactions in the training set). In particular, using the in-
teraction matrix, we calculate the Jaccard-similarity between drugs as well as
between targets. Thus the enhanced similarity-based representation of a drug (or
target, respectively) consists of its chemical (genetic) similarity to all the drugs
(targets) and its interaction-based similarity to all the drugs (targets). This is
illustrated in Fig. 2.

4.2 Projection-based Ensemble

We propose to build a projection-based ensemble of BLMs as follows. Given
the enhanced similarity-based representation of drugs and targets, we select a
random subset of features and use only the selected features when training the
local models (ECkNN) and making predictions. Denoting the size of the set
of selected features by FD and FT (for drugs and targets, respectively), the
above procedure first projects drugs into FD-dimensional, and targets into an
FT -dimensional subspace. Subsequently, these lower dimensional representations
are used with the prediction models.

The above process of random selection of features and making predictions
using the resulting lower-dimensional representation is repeated N -times. This
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Fig. 2. Illustration of enhanced similarity-based representation of drugs and targets

results in an ensemble of N prediction models. As each member of the ensemble is
constructed in the same way, their expected prediction accuracies will be similar,
therefore, we propose to average the predictions of the members of the ensemble.
Thus the final output of the ensemble is:

ŷi,j =
1

N

N∑
l=1

ŷ
(l)
i,j (5)

where ŷ
(l)
i,j is the prediction of the l-th BLM for the unknown pair ui,j .

The projection-based ensemble is illustrated in Fig. 3 for N = 2 base predic-
tion models with FD = FT = 3 features selected from the enhanced similarity-
based representation.

4.3 Prediction for New Drugs and Targets

One of the shortcomings of the BLM approach is that it does not handle the
case of new drugs/targets. With new drug (target, resp.), we mean a drug d
(target t) that does not have any known interaction in the training data. In such
cases, BLM labels all targets (drugs) as “0”, consequently, no reasonable local
model can be learned. In order to alleviate this problem, we use the weighted
profile [39] approach to obtain predictions for new drugs/targets.
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Fig. 3. Projection-based ensemble of BLMs using the enhanced similarity-based rep-
resentation of drugs and targets.

Given a new drug di, and a target tj , we predict the likelihood of the inter-
action between di and tj as follows:

ŷ′i,j =

∑
dk∈D\{di}

mk,jSDi,k∑
dk∈D\{di}

SDi,k
. (6)

The intuition behind Eq. (6) is that similar drugs are likely to behave similarly
in terms of their interaction with a given target. Therefore, drugs are weighed
according to their similarity to the new drug di and we calculate the weighted
average of the known interactions of other drugs with the same target.

The case of new targets is analogous. Given a new target tj and a drug di,
the weighted profile approach can be used to calculate the prediction for the
likelihood of the interaction between di and tj as follows:

ŷ′′i,j =

∑
tk∈T \{tj}

mi,kSTj,k∑
tk∈T \{tj}

STj,k
. (7)

Although the weighted profile approach is more general than BLM, in the
sense that it can be used for new drugs/targets as well, the predictions of the
weighted profile approach are less accurate than the predictions of BLM. There-
fore, we use the weighted profile approach instead of BLM only in case of new
drugs and targets. We summarize the proposed approach in Alg. 1.
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Algorithm 1 Advanced Local Drug-Target Interaction Prediction (ALADIN)

Require: Drug–Target interaction matrix I, Drug–drug similarity matrix SD, Target–
target similarity matrix ST , number of nearest neighbors k, ensemble size N , num-
ber of selected features FD, FT

Ensure: Likelihood of drug–target interactions
1: D ← enhanced similarity-based representations of drugs
2: T ← enhanced similarity-based representations of targets
3: for l = 1 . . . N do
4: D′ ← random subset of D with FD features
5: T ′ ← random subset of T with FT features
6: Predict interaction scores with BLM using ECkNN as local model and

D′ and T ′ as the representation of drugs and targets.
(Use the weighted profile approach instead of BLM in case of new
drugs/targets.)

7: end for
8: Average the predictions made in each execution of the loop

5 Experimental Evaluation

In order to assist reproducibility of our work, we evaluated our approach on
publicly available real-word drug–target interaction data. Next we describe the
data and the experimental protocol in detail. This is followed by the discussion
of our experimental results.3

5.1 Experimental Settings

Datasets We performed experiments on five drug–target interaction datasets
(Tab. 1), namely Enzyme, Ion Channel, G-protein coupled receptors (GPCR),
Nuclear Receptors (NR), and Kinase.4 These datasets have been used in various
studies previously, see e.g. [4], [12], [14], [24], [38], [39].

The first four datasets contain binary interaction matrices between drugs
and targets, each entry of which indicates whether the interaction between the
corresponding drug and target is known. In contrast, Kinase contains continu-
ous values of binding affinity for all drug–target pairs of the dataset. In order
to produce a binary interaction matrix, we used the same cutoff threshold as
Pahikkala et al. [24].

Additionally, each dataset contains a drug–drug similarity matrix and a
target–target similarity matrix. In case of the Enzyme, Ion Channel, GPCR
and NR datasets, chemical structure similarities between drugs were computed
using the SIMCOMP algorithm [16], while the Kinase dataset contains 2D Tan-
imoto coefficients. Similarities between targets were determined by the Smith-
Waterman algorithm, see [12] and [39] for details.

3 See http://www.biointelligence.hu/dti for further results.
4 The datasets are available at
https://zenodo.org/record/556337#.WPiAzIVOIdV
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Table 1. Number of drugs, targets and interactions in the datasets used in our study.

Dataset # Drugs # Targets # Interactions

Enzyme 445 664 2926

Ion Channels 210 204 1476

G-protein coupled receptors (GPCR) 223 95 635

Nuclear Receptors (NR) 54 26 90

Kinase 68 442 1527

Evaluation Protocol Although leave-one-out cross-validation is popular in the
DTI literature [4], [22] [23], in their recent study, Pahikkala et al. [24] argue that
it may lead to overoptimistic results. Thus, we performed experiments according
to the interaction-based 5×5-fold cross-validation protocol (in each round of the
cross-validation, the test set contains one fifth of all the drug–target pairs).

Evaluation Metrics We evaluated the predictions both in terms of Area Under
ROC Curve (AUC) and Area Under Precision-Recall Curve (AUPR). AUC and
AUPR values were calculated in each round of the cross-validation. We report
averaged values. Additionally, we performed paired t-test at significance level
p = 0.01 in order to judge if the observed differences are statistically significant.

Baselines We compared our approach, ALADIN, with other drug–target in-
teraction prediction techniques, such as BLM-NII, NetLapRLS and WNN-GIP.
BLM-NII is a recent version of BLM that extends BLM with “neighbor-based
interaction-profile inferring” [23]. NetLapRLS stands for “net Laplacian regular-
ized least squares” [38], while WNN-GIP is a combination of weighted nearest
neighbor and Gaussian interaction profile kernels [36].

Parameter Settings We set the number of base prediction models (N) to
25 for ALADIN.5 Other hyperparameters of ALADIN, whenever not indicated
otherwise, were learned via grid-search in internal 5-fold cross-validation on the
training data. In particular: the number of nearest neighbors for the local model,
ECkNN, and the number of selected features, were chosen from {3, 5, 7} and
{10, 20, 50} respectively.

Hyperparameters of the baselines were learned similarly. In particular: for
BLM-NII, the max function was used to generate final predictions and the weight

5 In our initial experiments, we observed that increasing the number of base models
results in asymptotically increasing performance. For example, we obtained AUPR of
0.835, 0.867 and 0.871 with 5, 25 and 100 base models on the Ion Channel dataset. We
made similar observations on the other datasets both in terms of AUC and AUPR.
Therefore, using N = 25 base models seems to be a fair compromise between runtime
and prediction quality.
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α for the combination of structural and collaborative similarities was chosen from
{0.0, 0.1, . . . , 1.0}. In WNN-GIP, the decay hyperparameter T was chosen from
{0.1, 0.2, . . . , 1.0} and the weight α for combination of structural and collabo-
rative similarities was chosen from {0.0, 0.1, . . . , 1.0}. The hyperparameters6 of
NetLapRLS, were chosen from {10−6, 10−5, . . . , 102}.

Implementation We implemented our approach, ALADIN, in Python.7 We
used the ECkNN implementation from the publicly available PyHubs library8

and methods from the NumPy machine learning library for the calculation of
AUC and AUPR. We used implementations of NetLapRLS, BLM-NII and WNN-
GIP from the publicly available PyDTI software library.9

5.2 Experimental Results

Our results are shown in Fig. 4 and Fig. 5. The symbols +/− denote if the differ-
ences between the best-performing approach and other methods are statistically
significant (+) or not (−).

As one can see, our approach, ALADIN outperformed its competitors, Net-
LapRLS, BLM-NII and WNN-GIP, on the Enzyme, Ion Channel, GPRC and
Kinase datasets both in terms of AUC and AUPR. In the vast majority of the
cases, the difference is statistically significant. In case of the NR dataset, the
difference between ALADIN, BLM-NII and WNN-GIP is not significant. Note,
however, that NR is an exceptionally small dataset, therefore, the results ob-
tained on NR are likely to be less stable compared to other datasets.

Additionally, we examined the contribution of hubness-aware error correc-
tion: in particular, we run ALADIN with simple kNN regression instead of
ECkNN. We found that ALADIN with ECkNN systematically outperformed
ALADIN with kNN on all the examined datasets. The difference was statisti-
cally significant in most of the cases. In terms of AUC, we observed the largest
difference on the Kinase dataset (0.93 versus 0.90), whereas in terms of AUPR,
the largest difference was observed on the Enzyme dataset (0.83 versus 0.73).
These results indicate that error correction is essential for accurate predictions.10

Furthermore, we examined how ALADIN’s performance depend on k, the
number of nearest neighbors in ECkNN. As one can see in Fig. 6, high perfor-
mance is maintained for various k values and k = 3 seems to result in good
results both in terms of AUC and AUPR.

6 β = βdrug = βtarget and γ = γdrug = γtarget
7 See https://github.com/lpeska/ALADIN for our codes.
8 https://sourceforge.net/projects/pyhubs/
9 https://github.com/stephenliu0423/PyDTI

10 These results are in accordance with our further observations: considering the input
data of the local models, the skewness of the distribution of bad k-nearest neigh-
bor occurrences (with k = 3), which is often used to quantify the presence of bad
hubs [33], is remarkably high, between 1.61 and 11.13.
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Fig. 4. Experimental results: the performance of ALADIN and its competitors in terms
of AUC (left) and AUPR (right) on the Enzyme, Ion Channel, GPCR and NR datasets.
The best-performing method is underlined. The symbols +/− denote if the differences
between the best-performing approach and other methods are statistically significant
(+) or not (−).
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Fig. 5. Experimental results: the performance of ALADIN and its competitors in terms
of AUC (left) and AUPR (right) on the Kinase dataset. The best-performing method
is underlined. The symbols +/− denote if the differences between the best-performing
approach and other methods are statistically significant (+) or not (−).

5.3 Application for the Prediction of New Interactions

Next, we illustrate that, besides achieving high accuracy in terms of AUC and
AUPR, the predictions of ALADIN may be relevant for pharmaceutical applica-
tions as well. We begin this discussion by noting that the drug–target interactions
contained in the Enzyme, Ion Channel, GPCR and NR datasets were extracted
from the Kyoto Encyclopedia of Genes and Genomes11 (KEGG) several years
ago and, in order to allow for comparison of prediction techniques, they have
been kept unchanged. However, in the mean time, additional drug–target inter-
actions have been validated chemically and the results have been uploaded to
databases, such as KEGG, DrugBank12 or Matador13.

Therefore, in order to demonstrate that our approach is able to predict new
interactions, we trained ALADIN and its competitors, BLM-NII, NetLapRLS
and WNN-GIP using all the interactions of the original datasets, and ranked
the non-interacting drug–target pairs of the original datasets according to their
predicted interaction scores. For simplicity, we use the term predicted new in-
teractions for the top-ranked 20 drug–target pairs. We say that a predicted new
interaction is validated if it is included in the current version of KEGG, Drug-
Bank or Matador.

In terms of the number of validated interactions, ALADIN had the best over-
all performance. For example, on the Ion Channel and NR datasets, ALADIN
was able to predict 12 and 8 validated interactions, whereas none of its competi-
tors was able to predict more than 6 validated interactions on these datasets.

Most notably, numerous validated interactions were only predicted by our
approach, for example, on the Enzyme dataset, the interactions between Ibupro-
fen (D00126) and arachidonate 15-lipoxygenase (hsa:246) and its second type

11 http://www.kegg.jp/
12 https://www.drugbank.ca/
13 http://matador.embl.de/
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Fig. 6. ALADIN’s performance in case of various k values in ECkNN.

(hsa:247); as well as the interaction between Phentermine (D05458) and mono-
amine oxidase A (hsa:4128); and the interaction between Dyphylline (D00691)
and phosphodiesterase 7A (hsa:5150). On the GPCR dataset, only ALADIN was
able to predict the validated interaction between Theophylline sodium acetate
(D01712) and adenosine A2b receptor (hsa:136), as well as the interaction be-
tween Loxapine (D02340) and dopamine receptor D1 (hsa:1812).

6 Conclusions and Outlook

In this paper, we considered the drug–target interaction prediction problem
which has important applications in understanding the mechanisms of how drugs
effect, drug repositioning and prediction of adverse effects. We proposed an ex-
tension of BLM, one of the most prominent DTI models. In particular, we pro-
posed the ALADIN approach which represents drugs and targets in a multi-
modal similarity space, uses ECkNN, a hubness-aware regression approach as
local model in BLM and builds a projection-based ensemble.

We performed experiments on widely-used publicly-available datasets, the
results of which show that our approach is superior to BLM-NII, NetLapRLS and
WNN-GIP. We also demonstrated that our approach is able to predict chemically
validated new drug–target interactions.

While DTI is an essential task, we point out that ALADIN may be adapted
for the prediction of interactions between other biomedical entities, such as
protein–RNA interactions [32] or protein–protein interactions [2].
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Furthermore, we believe that our approach may motivate new recommender
systems techniques as well. Although it was shown that only a few ratings per
user may be more relevant than content-based metadata [27], we argue that
the continuous flow of new users causes ongoing cold start problem [20], [26] in
many cases, such as small e-commerce enterprises. This indicates that hybrid
prediction models incorporating both relevance feedback and metadata may be
desirable. Methods like ALADIN can be applied in such domains, e.g., as a part
of an alternating hybrid approach, where users with sufficient feedback receive
purely collaborative recommendations.
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