
Person Authentication using Visual Representations
of Keyboard Typing Dynamics

Ladislav Peška, Patrik Veselý, Tomáš Skopal
Faculty of Mathematics and Physics

Charles University
Prague, Czech Republic

ladislav.peska/patrik.vesely/tomas.skopal@matfyz.cuni.cz

Krisztian Buza
Department of Mathematics-Informatics

Sapientia Hungarian University of Transylvania
Targu Mures, Romania

buza@biointelligence.hu

Abstract—In this paper, we focus on the problem of user’s
authentication through typing dynamics patterns. We specifically
focus on small-sized problems, where it is difficult to fully
train corresponding machine (deep) learning algorithms from
scratch. Instead, we propose a different approach based on the
visualization of the typing patterns and subsequent usage of pre-
trained feature extractors from the computer vision domain. We
evaluated the approach on a publicly-available dataset and results
indicate that this is a viable solution capable to improve over
several baselines. Moreover, the proposed visual representation
of the data contributes to the explainability of AI.

Index Terms—Typing Dynamics, Visual Representations

I. INTRODUCTION

Person (user) authentication may be necessary in various
domains ranging from online services over daily situations
(banking, traveling) to forensic investigations. Conventional
techniques rely on passwords, presence of a physical object
(identity card, passport, bank card, dynamic token generator,
etc.) and biometrics such as fingerprints, iris-patterns, elec-
troencephalography (EEG) or electrocardiography (ECG).

It was shown that the dynamics of keyboard typing (a.k.a.
typing patterns or keystroke dynamics) is characteristic to par-
ticular users [1], [2] and most users are hardly able to mimic
the dynamics of others [3]. Therefore, person authentication
based on typing patterns is especially appealing in cases when
the user is not necessarily interested to cooperate, such as
testing the identity of students when taking exams in an online
setting. Furthermore, in cases where high accuracy is required,
such as online bank transactions involving significant amounts
of money, person authentication based on typing patterns could
be combined with conventional techniques, such as passwords
and authentication codes sent to the user in SMS or e-mail.

Although the dynamics of typing is characteristic to users,
even the same user cannot always type with the exactly same
dynamics, see e.g. [2] for an illustration. In case of realistic
applications with many users, it is extremely difficult, if not
impossible, for human experts to identify patterns that can
reliably distinguish users. Therefore, approaches based on
machine learning are required.

This work was supported by Czech Science Foundation project GACR-
22-21696S and by Charles University grant SVV-260588. Source codes are
available from https://github.com/lpeska/KeystrokeDynamics2022

In the literature, person identification based on keystroke
dynamics is often considered as a time series classification
task, see e.g. [1], [2] and the references therein. Thus, in
principle, various time series classifiers may be used, such as
models based on dynamic time warping [4], or convolutional
neural networks [5]. Although solutions based on deep learn-
ing became very popular in the last decade, we have to note
that, in general, large amount of data is required to train such
systems. In case of authentication systems, including systems
based on keystroke dynamics, there may not be enough data
to train a neural network. The problem of insufficient training
data is, quite naturally, more severe for tasks with smaller
overall volume of users (e.g., authentication of students for
online examination) and also for users who have signed up
recently (i.e., new user problem). Therefore, most popular
solutions in the domain of keystroke dynamics are based on
similarity search (based on dynamic time warping distance,
DTW) and comparable techniques.

Nevertheless, an inherent difficulty of considering person
identification as a time series classification task is that only a
subset of the information, such as the duration of keystrokes,
may be represented by time series in a straight forward way.
However, it may be important to consider additional pieces of
information as well, e.g., which keys were pressed.

In the last decade, computer vision techniques exhibited
tremendous improvements mostly due to the application of
deep learning techniques - see e.g. [6]. Also, in some oc-
casions, pre-trained models of computer vision were suc-
cessfully applied as feature extractors for artificial images
representing initially non-visual data [7]–[9]. Therefore, we
propose TYping VIsualiZER framework (TYVIZER) to utilize
these advances in the domain of typing dynamics recognition.
Specifically, TYVIZER generates artificial images to represent
user’s typing patterns, then applies selected feature extractors
pre-trained on image domain to get embeddings of each image
and finally applies some similarity based learning technique
(e.g. k-nearest neighbors, kNN) for the desired prediction task.

The main advantage of our approach is that it does not
need large annotated training datasets, which is crucial in
many low-traffic applications. An additional advantage is that
the generated visualizations may be interpretable by human
experts, contributing towards the problem of explainability and

https://github.com/lpeska/KeystrokeDynamics2022


interpretability (of AI techniques) [10].
To sum up, main contributions of this paper are as follows:

• Proposed TYVIZER framework for user authentication
through their typing dynamics. The framework operates
in three steps: generating artificial visualizations of typ-
ing patterns, obtaining their descriptive embeddings and
applying similarity-based learning techniques to deliver
the desired prediction task.

• Visualizations of typing dynamics that may serve both as
an input of the downstream learning pipeline, but also as
interpretable representation of the underlying data.

• Evaluation w.r.t. user identification task on a publicly
available dataset.

II. RELATED WORK

Keystroke dynamics for person identification is a popular re-
search topic. Recent approaches range from modified distance
metrics [11] over time-frequency analysis [12] to one-class
naive Bayes [13]. Please refer to [14] for a more complete
overview. As the aforementioned examples show, a wide
variety of methods have been developed for the classification
of keystroke dynamics data.

Feature extraction from images is a well-studied task in
computer vision [15]. Most of the recent approaches for
feature extraction are based on state-of-the-art neural network
models, e.g. [16]. Nonetheless, various shallow models can
serve as image feature extractors as well, e.g. based on
depicted colors [17], textures, or more complex low-level
semantic descriptors [18]. We applied a range of both deep
and shallow feature extractors to learn representations of the
keystroke dynamics data and to identify the user based on
those learned features.

There are some related works aiming to transform initially
non-visual data to a visual representation and subsequently
utilize pre-trained or fine-tuned models of computer vision
to extract features from these visual representations [8], [9],
[19], [20]. This was even envisioned as a possible direc-
tion for an universal data representation [7]. While artificial
visual representations were tested on numerous problems,
with the exception of [21], we are not aware of any related
work applying them in the domain of keystroke dynamics.
Nonetheless, the goal in [21] was to combine facial images
with keystroke visualization. Specifically, only the duration
of typing events were represented, not the particular pressed
keys. In contrast, we also visualize additional information of
keystrokes that can not be represented by univariate time-series
in a straightforward way.

Obviously, one of the main challenges in the proposed
framework is how to construct the artificial visualizations.
Perhaps the simplest variant was described by Naz et al. [8]
for univariate time-series such as ECG. Authors directly
encoded the sequence of values as grey-scale colors and
plot them along one axis of the resulting image. In order
to adjust the varying length, time-series were trimmed to a
fixed size and to adjust for square-shaped images required by
the most of neural networks, the visualizations were chunked

and stacked along the y-axis in a lines-first fashion. We
based the proposed visualization on this generic approach,
but extended it considerably. Specifically, the typing dynamics
domain contains following additional challenges as compared
to simple univariate time-series.

• Individual keystrokes have varying duration, which
should be reflected in the resulting visualization.

• Pressing of different keys should be distinguished in
visualizations as well.

• Multiple keys can be pressed at the same time (e.g.,
pressing a SHIFT key together with some alphabet key
in order to capitalize it).

• Blank intervals between individual keystrokes may also
provide relevant information and should be visualized.

We are not aware of any single related approach combining
all of these challenges, but there are several related works
that inspired the proposed visualization approach. First, trans-
forming the length of a keystroke to the length of colorized
objects representing each keystroke is rather straightforward
extension of the original approach. One can for instance
construct arbitrarily granular multivariate time-series, where
for each time point and each key, the series will indicate,
whether it is currently pressed or not. As such, gaps between
individual keystrokes may be represented as blank spaces
of appropriate length. However, representing pressed keys is
more challenging. In some related works, authors directly
encoded individual channels of a multivariate time-series as
different components of RGB color model [19]. In our use-
case, these channels might correspond to individual pressed
keys. However, the volume of color channels is much smaller
than the set of keys on a standard keyboard, therefore a
substantial data reduction would have to be performed. In-
stead, we modified the idea from [22], where spatio-temporal
coordinates of human skeleton joints were visually encoded for
the purpose of gait recognition. Authors encoded coordinates
of a 3D cube as corresponding values of red, green and blue
channels of RGB color model. Then, for each time point, each
joint was represented as a color corresponding to its current
location in the 3D cube. We used a similar idea of overlaying
RGB colors over a standard (2D) keyboard layout. As such,
spatially adjacent keys would be rendered in a similar color.

III. TYVIZER FRAMEWORK

The proposed framework is comprised from three main
components: typing patterns visualization, feature extraction
and similarity-based classification. These components are
plugged as a pipeline in that order.

A. Typing Patterns Visualization

Our typing pattern visualization is inspired by the work
of Naz et al. [8]. At the conceptual level, we approached
typing patterns as multivariate time-series, where each channel
corresponds to a single key and represents binary information
whether the key was pressed at each timepoint.1 In the

1Note, however, that in implementation we utilized a more compact event-
based representation from which the multivariate time-series can be derived.



Fig. 1: Variants of color mappings for the keyboard layout.

visualization, x-axis represents time. Along the y-axis, Naz
et al. [8] represented values of the (univariate) signal encoded
as greyscale color blobs. In contrast, the signal is binary and
multimodal in our case, so the same approach cannot be
applied. Instead, we assigned colors to each channel (each
key) and depict this color at each point corresponding to
channel’s positive value (i.e., forming rectangles of specified
color, where its size corresponds to the key press duration).
Nonetheless, we followed on [8] in two key aspects of the
visualization. First, we fixed the scale of the time axis (in our
case, the maximal represented value corresponds to the 99%
quantile of the typing patterns duration). This was proposed to
represent the time axis consistently along all typing patterns.
Second, we break the time axis at several points (15 in our
case) and stacked the resulting chunks along the y-axis. The
main reason for this is that most feature extractors expect
rectangular images on its input and such resizing would make
the differences in keystroke duration virtually unrecognizable.

While assigning colors to each key, we adapted the idea
of Elias et al. [22] and overlayed a color gradient over the
2D space corresponding to a standard keyboard layout. We
experimented with the following four variants. In the first
variant (denoted as RG), keyboard’s y-axis is mapped to
the red channel, keyboard’s x-axis is mapped to the green
channel, while the blue channel is kept fixed (Fig. 1a). In
the second variant (RGB), the blue channel is also varied to
amplify the differences between individual keys. Specifically,
blue channel values linearly depends on both horizontal and
vertical coordinates with the highest and lowest intensities in
the top-left and bottom-right corners respectively (Fig. 1b).
The remaining two variants are slight modifications of RGB
approach, namely reversing the color slopes (RGB inverted,
Fig. 1c) and shuffling the color channels (i.e., keyboard’s y-
axis is mapped to the green channel, keyboard’s x-axis to the
blue channel and diagonal to the red channel - see Fig. 1d).

We consider RG variant as the basic option, while RGB
variant aims to explore whether more contrast can do better.
With RGB inverted and GBR variants we want to explore the
extent to which are feature extractors sensitive to particular
color mappings. Apart from the colored variants, we also
evaluated a baseline monochromatic variant, where all pressed
keys have black color. Note that we only assigned colors to
the basic alphanumeric keyboard keys and several control keys

(shift, enter, backspace etc.). While this accounted for the
vast majority of data, there were exceptions. In such cases,
pressed keys with unknown coordinates were depicted as black
similarly as in monochromatic variant.

So far we did not accounted for multiple keys being pressed
simultaneously. While we can theoretically use some color
arithmetics (e.g., depicting mean color of all pressed keys),
this may introduce some unwanted similarities (i.e., mean of
two key’s colors equals a color of another key). Instead, we
followed a different approach. Depicted rectangles’ height is
only 80% of the line height and they are partially transparent
(alpha=0.8). If another key is pressed while previous was not
released yet, the corresponding rectangle is moved up (20% of
the line height), so rectangles corresponding to both previous
and current key are at least partially visible. Some examples
of the visualized typing patterns are depicted in Fig. 2.

B. Feature Extractors

In this paper, we consider three types of feature extractors:
simple color models, extractors based on SIFT features [23]
and several deep learning (DL) techniques. Each extractor
receives an artificial image corresponding to one recorded
typing pattern2 and provides embedding (i.e., a feature vector)
representing the image on its output. Let us now describe
individual extractors used in this study.
Color-based extractors. Simple color-based extractors were
commonly used in the pre-deep learning era for content-based
image retrieval. Due to their usual simplicity, they worked
well in some domains [17] and thanks to the hand-crafted
nature these methods usually do not need any training data.
As a representative of this class, we utilized RGB Histogram
extractor. This method computes a pixel-wise histograms of
the whole input image separately for each of R-G-B color
channels. Then, all three histograms are concatenated and L2-
normalized. The size of the histogram is a hyperparameter of
the model (32, 64 and 256 used in the experiments).
SIFT-based extractors. Scale-invariant feature transform
(SIFT) [23] expand the color-based models with capability to
extract also shapes and textures. Similarly as in the previous
case, extracted features are pre-defined and thus no training is
necessary. Nonetheless, as the volume of SIFT keypoints may
vary across images, we utilize a post-processing as proposed
in [18]. We denote this method as VLAD to remain consistent
with the related work.
Deep learning based extractors. In the last decade, convolu-
tional neural networks [24] (and more recently transformer-
based architectures [25], [26]) have been widely used as
state-of-the-art in many fields of computer vision and image
retrieval. These deep networks need a lot of computation
time and training data to learn, but such large datasets are
available only for a handful of tasks. Therefore, transfer
learning approach is often used. The method uses data from
another domain to train a deep network and then use this pre-
trained (optionally fine-tuned) network on the target domain.

2Note that for the performance improvements, mean image was subtracted
from all visualizations before passing them to the extractor.



Fig. 2: Variants of visualized typing patterns for RG (top), RGB inverted (middle) and monochromatic color maps. For
comparison, each column corresponds to the same typing pattern. The differences between patterns are clearly visible and
understandable by human observer, therefore supporting explainability and scrutinability of the learning process.

As representatives of this class, we selected EfficientNet [24]
(B2 size variant), Vision transformer (ViT; large variant) [25]
and ImageGPT [26] (medium variant). All networks were pre-
trained on ImageNet3 w.r.t. image classification task. For Effi-
cientNet and ViT we utilized activations of the last connected
layer as feature vectors, but for ImageGPT, we used network’s
mid layer as suggested by its authors.

C. Typing Pattern Classification

While having the embeddings for each typing pattern vi-
sualization, one more step is necessary to perform person
authentication or related tasks. In this paper, we focus on the
problem of typing pattern classification, where individual users
represent the target classes. In some sense, this can be consid-
ered as a worst-case scenario for person authentication, i.e.,
whether any of the existing users could successfully pretend
to be someone else without being given away by their typing
patterns. In order to perform typing pattern classification, we
employed two similarity-based classifiers, namely k nearest
neighbors (kNN) and its hubness-aware extension, hubness-
weighted kNN (HWkNN).

Nearest neighbor classifiers are simple, intuitive and pop-
ular, there are theoretical results about their accuracy and
error bounds [27]. However, nearest neighbors are affected
by bad hubs. Roughly speaking, an instance is called a bad

3https://www.image-net.org/

hub, if it appears surprisingly frequently as nearest neighbors
of other instances, but its class label is different from the
labels of those other instances. Bad hubs were shown to
be responsible for a surprisingly large fraction of the total
classification error. In order to reduce the detrimental effect
of bad hubs, hubness-aware classifiers have been introduced,
such as hubness-weighted k nearest neighbor or HWkNN for
short [28]. Next, we review HWkNN.

We say that an instance x is a bad neighbor of another
instance x′ if (i) x is one of the kH -nearest neighbors of x′

and (ii) their class labels are different. In case of hubness-
aware weighting [28], we first determine how frequently each
instance x appears as a bad neighbor of other instances.
This value is further standardized (denoted as hb(x)) and
used to determine the weight of each instance during the
k-nearest neighbor classification.4 Specifically, the weight of
each training instance is w(x) = e−hb(x). We note that one
additional advantage of the proposed approach is a seamless
extension of the model with new target classes (i.e., new users)
without the need of full model re-training.

In evaluation, we considered kNN with k ∈ {1, 3, 5, 7}, co-
sine distance and distance-weighted neighbors. For HWkNN,
we also considered the number of neighbors k ∈ {1, 3, 5, 7}

4Note that the number of nearest neighbors in the final phase of kNN
classification is not necessarily the same as the number of nearest neighbors
used to determine the bad hubness score. The former is denoted by k, while
the latter is denoted by kH .

https://www.image-net.org/


and cosine distance, while for hubness-aware weights we
considered kH ∈ {3, 5}.

IV. EVALUATION

A. Dataset and Task

We used the dataset associated with the Person Identification
Challenge5. As described in [29], keystroke dynamics data was
collected in more than 500 typing sessions from 12 users. In
each of the typing sessions, the users were asked to type the
same short text. In particular, the users were asked to type
the following text based on the English Wikipedia page about
Neil Armstrong:

That’s one small step for a man, one giant leap for mankind.
Armstrong prepared his famous epigram on his own. In a post-
flight press conference, he said that he decided on the words
just prior to leaving the lunar module.

A JavaScript application was used to register keyboard
events such as pressing and releasing of each key. We note that
due to typing errors and corrections, the length of keystroke
sequences vary. Therefore, this dataset is more realistic than
many others. Moreover, due to the relatively long typing
sessions, experiments on this data simulate online exams
more realistically than other datasets containing short typing
sessions, in which users typed a password or their own name.

B. Evaluation Protocol

For the purpose of evaluation, we kept the same protocol
and data splits as described on the website of the Person
Identification Challenge. Specifically, for all users, we kept the
first 5 typing patterns as train set, while the remaining typing
patterns were split into validation and test sets at random. The
validation set was utilized to select best hyperparameters of
each model, while we report on the results w.r.t. test set. As the
proposed framework comprises from three steps, we will refer
to its individual variants as a triplet of visualization variant,
feature extractor and the classifier respectively. 6 Our approach
was compared with several baselines based on dynamic time-
warping (DTW) distance, namely 1NN, kNN, ECkNN and
SUCCESS. 1NN stands for the simple 1-nearest neighbor clas-
sifier (w.r.t. DTW distance), while kNN and ECkNN denote
classification through nearest neighbor regression approach,
comparing all applicable pairs of classes, as described in [29].
SUCCESS refers to semi-supervised classification of time
series based on the cluster-and-label paradigm [30].

C. Results

Figure 3 depicts overall results of the evaluation. To our sur-
prise, more advanced feature extractors were significantly out-
performed (p-values < 5.2×10−10 w.r.t. one-sided Fisher ex-
act test) by a simple RGB histogram method. Also, RG+RGB
histogram, RGB+RGB histogram and GBR+RGB histogram

5http://biointelligence.hu/typing-challenge
6I.e., GBR+ViT+kNN denotes GBR visualization variant, ViT feature

extractor and kNN classifier. Note that while giving general statements on
some of the pipeline steps, others are left blank.

variants significantly outperformed all baselines (p-value <=
0.028). As for the other feature extractors, also ImageGPT and
VLAD+HWkNN performed comparably with the baselines.
Nonetheless, given the higher complexity of both extractors as
well as the fact that their feature space is more dimensional,
RGB histogram can be considered as a clear winner among
the feature extractors.

We also observed a certain level of variation in results
of individual color mappings. Overall, RGB inverted map-
ping provided inferior results as compared to RGB and
GBR (p-value <= 0.01). Also, RGB mapping significantly
outperformed RG one (p-value = 0.005). Therefore, some
thoughts should be given to the particular color schemes
in the future work. However, most notably, using any of
the visualization variants provided considerable improvements
over a monochromatic baseline (p-value <= 0.009), showing
that adding information about pressed keys may provide valu-
able insights. Both kNN and HWkNN classifiers performed
comparably in general and also the best achieved results
were almost identical (i.e., RGB+RGB histogram+kNN vs.
RG+RGB histogram+HWkNN).

V. DISCUSSION AND CONCLUSIONS

Overall, we can conclude that the proposed approach is a
viable solution for user’s authentication through their typing
dynamics patterns. One of the main advantages of the proposed
solution is that no large datasets are necessary to train the
corresponding models, which is especially convenient for
small-scale tasks such as student’s identification during on-
line exams.

Let us also note that the proposed visualization approach is
easily extendable via additional modalities. For instance, key-
press strength can be visualized e.g. via height of the colored
rectangle, or its alpha-channel.

Rather surprising for us was the performance of simple RGB
histogram method. In some sense, it actually works as a bag of
stroked keys and due to the partial transparency of visualiza-
tions, it can also adjust for overlapping keystrokes. So, there
is a solid background behind this approach. Even though, we
expected state-of-the-art DL techniques to outperform it. We
plan to further investigate, whether this is due to excessively
large dissimilarities between train and task domains and e.g.,
whether some modifications to the visualization approach
could help. Also, while the feature extractors can work as
fully pre-trained models, we would like to explore the option
to fine-tune them even on such small datasets.

Another limitation of our current work lies in the visual-
ization approach itself. While we evaluated several variants
of keys coloring, there are several other hyperparameters that
were held fixed in the current experiments (e.g., length of visu-
alized patterns, number of line breaks, levels of transparency).
Therefore, we plan to experiment with the visualization ap-
proach more thoroughly in the future.

REFERENCES

[1] M. Antal and L. Z. Szabó, “An evaluation of one-class and two-
class classification algorithms for keystroke dynamics authentication

http://biointelligence.hu/typing-challenge


Fig. 3: Overall results w.r.t. classification accuracy for kNN (left), HWkNN (center) and several baseline methods (right).

on mobile devices,” in 2015 20th International Conference on Control
Systems and Computer Science. IEEE, 2015, pp. 343–350.

[2] K. Buza and D. Neubrandt, “How you type is who you are,” in
2016 IEEE 11th International Symposium on Applied Computational
Intelligence and Informatics (SACI). IEEE, 2016, pp. 453–456.

[3] F. Monrose and A. D. Rubin, “Keystroke dynamics as a biometric for
authentication,” Future Generation computer systems, vol. 16, no. 4, pp.
351–359, 2000.

[4] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE transactions on acoustics, speech,
and signal processing, vol. 26, no. 1, pp. 43–49, 1978.

[5] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal of Systems Engineering
and Electronics, vol. 28, no. 1, pp. 162–169, 2017.

[6] M.-H. Guo, T.-X. Xu, J.-J. Liu, Z.-N. Liu, P.-T. Jiang, T.-J. Mu, S.-H.
Zhang, R. R. Martin, M.-M. Cheng, and S.-M. Hu, “Attention mecha-
nisms in computer vision: A survey,” Computational Visual Media, pp.
1–38, 2022.

[7] T. Skopal, “On visualizations in the role of universal data representa-
tion,” in ICMR, ser. ICMR ’20. New York, NY, USA: ACM, 2020, p.
362–367.

[8] M. Naz, J. H. Shah, M. A. Khan, M. Sharif, M. Raza, and
R. Damaševičius, “From ecg signals to images: a transformation based
approach for deep learning,” PeerJ. Computer science, vol. 7, pp. e386–
e386, Feb 2021.

[9] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and W. Zou, αDiff:
Cross-Version Binary Code Similarity Detection with DNN. New York,
NY, USA: Association for Computing Machinery, 2018, p. 667–678.

[10] W. Samek, G. Montavon, A. Vedaldi, L. Hansen, and K.-R. Müller,
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
Springer, 2019.

[11] A.-C. Iapa and V.-I. Cretu, “Modified distance metric that generates
better performance for the authentication algorithm based on free-text
keystroke dynamics,” in 2021 IEEE 15th International Symposium on
Applied Computational Intelligence and Informatics (SACI). IEEE,
2021, pp. 000 455–000 460.

[12] R. Toosi and M. A. Akhaee, “Time–frequency analysis of keystroke
dynamics for user authentication,” Future Generation Computer Systems,
vol. 115, pp. 438–447, 2021.

[13] J. Ho and D.-K. Kang, “One-class naı̈ve bayes with duration feature
ranking for accurate user authentication using keystroke dynamics,”
Applied Intelligence, vol. 48, no. 6, pp. 1547–1564, 2018.

[14] N. Raul, R. Shankarmani, and P. Joshi, “A comprehensive review of
keystroke dynamics-based authentication mechanism,” in International
Conference on Innovative Computing and Communications. Springer,
2020, pp. 149–162.

[15] M. Nixon and A. Aguado, Feature extraction and image processing for
computer vision. Academic press, 2019.

[16] M. E. Hoque and K. Kipli, “Deep learning in retinal image segmentation
and feature extraction: A review.” International Journal of Online &
Biomedical Engineering, vol. 17, no. 14, 2021.

[17] T.-C. Lu and C.-C. Chang, “Color image retrieval technique based on
color features and image bitmap,” Information Processing & Manage-
ment, vol. 43, no. 2, pp. 461–472, 2007.

[18] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local de-
scriptors into a compact image representation,” in 2010 IEEE computer
society conference on computer vision and pattern recognition. IEEE,
2010, pp. 3304–3311.

[19] G. Xu, X. Shen, S. Chen, Y. Zong, C. Zhang, H. Yue, M. Liu,
F. Chen, and W. Che, “A Deep Transfer Convolutional Neural Network
Framework for EEG Signal Classification,” IEEE Access, vol. 7, pp.
112 767–112 776, 2019.

[20] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware
images: Visualization and automatic classification,” in International
Symposium on Visualization for Cyber Security (VizSec), Jul 2011.

[21] A. Tewari and P. Verma, “An improved user identification based on
keystroke-dynamics and transfer learning,” Webology, vol. 19, no. 1,
2022.

[22] P. Elias, J. Sedmidubsky, and P. Zezula, “Motion images: An effective
representation of motion capture data for similarity search,” in Simi-
larity Search and Applications, G. Amato, R. Connor, F. Falchi, and
C. Gennaro, Eds. Cham: Springer International Publishing, 2015, pp.
250–255.

[23] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[24] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning. PMLR, 2019, pp. 6105–6114.

[25] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[26] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, P. Dhariwal, D. Luan,
and I. Sutskever, “Generative pretraining from pixels,” 2020.

[27] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern
recognition. Springer Science & Business Media, 2013, vol. 31.

[28] M. Radovanović, A. Nanopoulos, and M. Ivanović, “Nearest neighbors
in high-dimensional data: The emergence and influence of hubs,” in
Proceedings of the 26th Annual International Conference on Machine
Learning, 2009, pp. 865–872.

[29] K. Buza, “Person identification based on keystroke dynamics: Demo and
open challenge.” in CAiSE Forum, vol. 4, 2016, pp. 161–168.

[30] K. Marussy and K. Buza, “Success: a new approach for semi-supervised
classification of time-series,” in International conference on artificial
intelligence and soft computing. Springer, 2013, pp. 437–447.


	Introduction
	Related Work
	TYVIZER framework
	Typing Patterns Visualization
	Feature Extractors
	Typing Pattern Classification

	Evaluation
	Dataset and Task
	Evaluation Protocol
	Results

	Discussion and Conclusions
	References

